Chen–Ruan Cohomology of 1,n and ¯ 1,n
Annales de l'Institut Fourier, Volume 63 (2013) no. 4, p. 1469-1509
In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable n-pointed curves of genus 1. In the first part of the paper we study and describe stack theoretically the twisted sectors of 1,n and ¯ 1,n . In the second part, we study the orbifold intersection theory of ¯ 1,n . We suggest a definition for an orbifold tautological ring in genus 1, which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.
Dans ce travail on calcule la cohomologie de Chen–Ruan de l’espace de modules des courbes lisses et stables de genre 1 avec n points marqués. Dans la première partie on étudie et on décrit les secteurs tordus de 1,n et ¯ 1,n , en tant que champs.Dans la deuxième partie, on étudie la théorie d’intersection orbifold de ¯ 1,n . On donne une définition possible de l’anneau tautologique orbifold en genre 1, comme sous-anneau simultanément de la cohomologie de Chen–Ruan et de l’anneau de Chow orbifold.
DOI : https://doi.org/10.5802/aif.2808
Classification:  14H10,  14N35,  55N32,  14D23,  14H37,  55P50
Keywords: moduli spaces, Gromov-Witten, orbifold, cohomology, tautological ring
@article{AIF_2013__63_4_1469_0,
     author = {Pagani, Nicola},
     title = {Chen--Ruan Cohomology of $\mathcal{M}\_{1,n}$ and $\overline{\mathcal{M}}\_{1,n}$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {4},
     year = {2013},
     pages = {1469-1509},
     doi = {10.5802/aif.2808},
     mrnumber = {3137360},
     zbl = {06359594},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2013__63_4_1469_0}
}
Pagani, Nicola. Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$. Annales de l'Institut Fourier, Volume 63 (2013) no. 4, pp. 1469-1509. doi : 10.5802/aif.2808. http://www.numdam.org/item/AIF_2013__63_4_1469_0/

[1] Abramovich, Dan; Graber, Tom; Vistoli, Angelo Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 310 (2002), pp. 1-24 | MR 1950940 | Zbl 1067.14055

[2] Abramovich, Dan; Graber, Tom; Vistoli, Angelo Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Tome 130 (2008) no. 5, pp. 1337-1398 | Article | MR 2450211 | Zbl 1193.14070

[3] Adem, Alejandro; Leida, Johann; Ruan, Yongbin Orbifolds and stringy topology, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 171 (2007) | MR 2359514 | Zbl 1157.57001

[4] Belorousski, Pavel Chow Rings of moduli spaces of pointed elliptic curves, Chicago (1998) (Ph. D. Thesis) | MR 2716762

[5] Breen, Lawrence On the classification of 2 -gerbes and 2 -stacks, Astérisque (1994) no. 225 (160 pp) | MR 1301844 | Zbl 0818.18005

[6] Chen, Weimin; Ruan, Yongbin A new cohomology theory of orbifold, Comm. Math. Phys., Tome 248 (2004) no. 1, pp. 1-31 | Article | MR 2104605 | Zbl 1063.53091

[7] Diamond, Fred; Shurman, Jerry A first course in modular forms, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 228 (2005) | MR 2112196 | Zbl 1062.11022

[8] Faber, Carel; Pandharipande, Rahul Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Tome 7 (2005) no. 1, pp. 13-49 | Article | MR 2120989 | Zbl 1084.14054

[9] Fantechi, Barbara; Göttsche, Lothar Orbifold cohomology for global quotients, Duke Math. J., Tome 117 (2003) no. 2, pp. 197-227 | Article | MR 1971293 | Zbl 1086.14046

[10] Fulton, William Intersection Theory, Springer-Verlag, Berlin (1984) | MR 732620 | Zbl 0885.14002

[11] Getzler, Ezra Operads and moduli of genus 0 Riemann surfaces, The moduli space of curves (Texel Island, 1994), Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 129 (1995), pp. 199-230 | MR 1363058

[12] Getzler, Ezra Intersection theory on M ¯ 1,4 and elliptic Gromov-Witten invariants, J. Amer. Math. Soc., Tome 10 (1997) no. 4, pp. 973-998 | Article | MR 1451505 | Zbl 0909.14002

[13] Getzler, Ezra The semi-classical approximation for modular operads, Comm. Math. Phys., Tome 194 (1998) no. 2, pp. 481-492 | Article | MR 1627677 | Zbl 0912.18007

[14] Giraud, Jean Cohomologie non abélienne (French), Springer-Verlag, Berlin-New York, Die Grundlehren der mathematischen Wissenschaften, Band, Tome 179 (1971) | MR 344253 | Zbl 0226.14011

[15] Graber, Tom; Pandharipande, Rahul Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Tome 51 (2003) no. 1, pp. 93-109 | Article | MR 1960923 | Zbl 1079.14511

[16] Graber, Tom; Vakil, Ravi Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Tome 130 (2005) no. 1, pp. 1-37 | Article | MR 2176546 | Zbl 1088.14007

[17] Keel, Sean Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc., Tome 330 (1992) no. 2, pp. 545-574 | MR 1034665 | Zbl 0768.14002

[18] Mann, Étienne Orbifold quantum cohomology of weighted projective spaces, J. Algebraic Geom., Tome 17 (2008) no. 1, pp. 137-166 | Article | MR 2357682 | Zbl 1146.14029

[19] Mumford, David Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry Vol II, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 36 (1983), pp. 271-328 | MR 717614 | Zbl 0554.14008

[20] Pagani, Nicola Chen–Ruan cohomology of moduli of curves, SISSA (Trieste) (2009) (Ph. D. Thesis)

[21] Pagani, Nicola The Chen-Ruan cohomology of moduli of curves of genus 2 with marked points, Adv. Math., Tome 229 (2012) no. 3, pp. 1643-1687 | Article | MR 2871153 | Zbl 1236.14032

[22] Pagani, Nicola The orbifold cohomology of moduli of hyperelliptic curves, Int. Math. Res. Not. IMRN (2012) no. 10, pp. 2163-2178 | MR 2923163 | Zbl 1259.14029

[23] Pagani, Nicola; Tommasi, Orsola The orbifold cohomology of moduli of genus 3 curves (http://arxiv.org/abs/1103.0151)

[24] Petersen, Dan The structure of the tautological ring in genus 1 (http://arxiv.org/abs/1205.1586v1)

[25] Silverman, Joseph H. The arithmetic of elliptic curves, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 106 (1992) | MR 1329092 | Zbl 0585.14026

[26] Spencer, James E. The stringy Chow ring of the moduli stack of genus-two curves and its Deligne-Mumford compactification, Boston (2004) (Ph. D. Thesis) | MR 2705012

[27] Spencer, James E. The orbifold cohomology of the moduli of genus-two curves, Gromov-Witten theory of spin curves and orbifolds, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 403 (2006), pp. 167-184 | MR 2234890 | Zbl 1115.14018

[28] Vistoli, Angelo Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Tome 97 (1989) no. 3, pp. 613-670 | Article | MR 1005008 | Zbl 0694.14001