Boscain, Ugo; Laurent, Camille
The Laplace-Beltrami operator in almost-Riemannian Geometry  [ L’opérateur de Laplace-Beltrami en Géométrie presque-Riemannienne ]
Annales de l'institut Fourier, Tome 63 (2013) no. 5 , p. 1739-1770
MR 3186507 | Zbl 06284531 | 3 citations dans Numdam
doi : 10.5802/aif.2813
URL stable : http://www.numdam.org/item?id=AIF_2013__63_5_1739_0

Classification:  53C17,  35P05,  58C40
Mots clés: Grushin, opérateur de Laplace-Beltrami, structures presque-Riemannienne
On étudie l’opérateur de Laplace-Beltrami dans des structures Riemanniennes généralisées sur des surfaces orientables pour lesquelles un repère orthonormé est donné par une paire de champs de vecteurs pouvant devenir colinéaires. Sous l’hypothèse que la structure est génératrice avec des crochets de Lie d’ordre 2, on prouve que l’opérateur de Laplace-Beltrami est essentiellement autoadjoint et a un spectre discret. Par conséquent, une particule quantique ne peut pas traverser l’ensemble singulier (i.e., là où les champs de vecteurs deviennent colinéaires) et la chaleur ne peut pas diffuser à travers la singularité. Le phénomène est intéressant puisque lorsqu’on s’approche de l’ensemble singulier, toutes les quantités Riemanniennes explosent, mais les géodésiques sont encore bien définies et peuvent traverser l’ensemble singulier sans singularité. Ce phénomène apparaît aussi dans des structures sous-Riemanniennes qui ne sont pas équirégulières, i.e., dont le vecteur de croissance dépend du point. On montre ce fait en analysant le cas Martinet.
We study the Laplace-Beltrami operator of generalized Riemannian structures on orientable surfaces for which a local orthonormal frame is given by a pair of vector fields that can become collinear. Under the assumption that the structure is 2-step Lie bracket generating, we prove that the Laplace-Beltrami operator is essentially self-adjoint and has discrete spectrum. As a consequence, a quantum particle cannot cross the singular set (i.e., the set where the vector fields become collinear) and the heat cannot flow through the singularity. This is an interesting phenomenon since when approaching the singular set all Riemannian quantities explode, but geodesics are still well defined and can cross the singular set without singularities. This phenomenon also appears in sub-Riemannian structures which are not equiregular, i.e., when the growth vector depends on the point. We show this fact by analyzing the Martinet case.

Bibliographie

[1] Agrachev, A.; Barilari, D.; Boscain, U. Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes) (http://people.sissa.it/agrachev/agrachev_files /notes.html.)

[2] Agrachev, A. A.; Boscain, U.; Charlot, G.; Ghezzi, R.; Sigalotti, M. Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010) no. 3, p. 793–807 Article  Numdam | MR 2629880 | Zbl 1192.53029

[3] Agrachev, Andrei; Boscain, Ugo; Gauthier, Jean-Paul; Rossi, Francesco The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., 256 (2009) no. 8, p. 2621–2655 Article  MR 2502528 | Zbl 1165.58012

[4] Agrachev, Andrei; Boscain, Ugo; Sigalotti, Mario A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst., 20 (2008) no. 4, p. 801–822 Article  MR 2379474 | Zbl 1198.49041

[5] Agrachev, Andrei A.; Sachkov, Yuri L. Control theory from the geometric viewpoint, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, 87 (2004) (Control Theory and Optimization, II) MR 2062547 | Zbl 1062.93001

[6] Barilari, Davide Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry, Journal of Mathematical Science, To appear Zbl 1294.58004

[7] Barilari, Davide; Boscain, Ugo; Neel, Robert Small time heat kernel asymptotics at the sub-Riemannian cut-locus, Journal of Differential Geometry, 92 (2012) no. 3, p. 373–416 MR 3005058 | Zbl 1270.53066

[8] Bellaïche, André The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Birkhäuser, Basel (Progr. Math.) 144 (1996), p. 1–78 MR 1421822 | Zbl 0862.53031

[9] Bonnard, B.; Caillau, J.-B.; Sinclair, R.; Tanaka, M. Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009) no. 4, p. 1081–1098 Article  | Numdam | MR 2542715 | Zbl 1184.53036

[10] Bonnard, Bernard; Caillau, Jean Baptiste Metrics with equatorial singularities on the sphere (Preprint 2011, HAL, vol. 00319299, pp. 1-29)

[11] Bonnard, Bernard; Charlot, Grégoire; Ghezzi, Roberta; Janin, Gabriel The Sphere and the Cut Locus at a Tangency Point in Two-Dimensional Almost-Riemannian Geometry, J. Dynam. Control Systems, 17 (2011) no. 1, p. 141–161 Article  MR 2765542 | Zbl 1209.53014

[12] Bonnard, Bernard; Chyba, Monique Singular trajectories and their role in control theory, Springer-Verlag, Berlin, Mathématiques & Applications (Berlin) [Mathematics & Applications], 40 (2003) MR 1996448 | Zbl 1022.93003

[13] Boscain, U.; Chambrion, T.; Charlot, G. Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005) no. 4, p. 957–990 Article  MR 2170218 | Zbl 1084.81083

[14] Boscain, U.; Charlot, G. Resonance of minimizers for n-level quantum systems with an arbitrary cost, ESAIM Control Optim. Calc. Var., 10 (2004) no. 4, p. 593–614 (electronic) Article  Numdam | MR 2111082 | Zbl 1072.49002

[15] Boscain, U.; Charlot, G.; Gauthier, J.-P.; Guérin, S.; Jauslin, H.-R. Optimal control in laser-induced population transfer for two- and three-level quantum systems, J. Math. Phys., 43 (2002) no. 5, p. 2107–2132 Article  MR 1893663 | Zbl 1059.81195

[16] Boscain, U.; Charlot, G.; Ghezzi, R. Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013) no. 1, p. 41–62 Article  MR 3010077 | Zbl 1260.53063

[17] Boscain, Ugo; Charlot, Gregoire; Ghezzi, Roberta; Sigalotti, Mario Lipschitz Classification of Two-Dimensional Almost-Riemannian Distances on Compact Oriented Surfaces, J. Geom. Anal., 23 (2013) no. 1, p. 438–455 Article  MR 3010287 | Zbl 1259.53031

[18] Boscain, Ugo; Sigalotti, Mario High-order angles in almost-Riemannian geometry, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 24. Année 2005–2006, Univ. Grenoble I (Sémin. Théor. Spectr. Géom.) 25 (2008), p. 41–54 Numdam | MR 2478807 | Zbl 1159.53320

[19] Donnelly, H.; Garofalo, N. Schrödinger operators on manifolds, essential self-adjointness, and absence of eigenvalues, Journal of Geometric Analysis, 7 (1997) no. 2, p. 241–257 Article  MR 1646768 | Zbl 0912.58043

[20] Franchi, Bruno; Lanconelli, Ermanno Une métrique associée à une classe d’opérateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino (1983) no. Special Issue, p. 105–114 (1984) (Conference on linear partial and pseudodifferential operators (Torino, 1982)) MR 745979 | Zbl 0553.35033

[21] Grušin, V. V. A certain class of hypoelliptic operators, Mat. Sb. (N.S.), 83 (125) (1970), p. 456–473 MR 279436

[22] Gérard, P.; Grellier, S The Szegö cubic equation, Ann. Scient. Ec. Norm. Sup., 43 (2010) no. 4, p. 761–809 Numdam | MR 2721876 | Zbl 1228.35225

[23] Jean, Frédéric Uniform estimation of sub-Riemannian balls, J. Dynam. Control Systems, 7 (2001) no. 4, p. 473–500 Article  MR 1854033 | Zbl 1029.53039

[24] Kalf, H.; Walter, J. Note on a paper of Simon on essentially self-adjoint Schrödinger operators with singular potentials, Archive for Rational Mechanics and Analysis, 52 (1973) no. 3, p. 258–260 Article  MR 338549 | Zbl 0277.47008

[25] Kato, T. Schrödinger operators with singular potentials, Israel Journal of Mathematics, 13 (1972) no. 1, p. 135–148 Article  MR 333833 | Zbl 0246.35025

[26] Léandre, Rémi Minoration en temps petit de la densité d’une diffusion dégénérée, J. Funct. Anal., 74 (1987) no. 2, p. 399–414 Article  MR 904825 | Zbl 0637.58034

[27] Maeda, M. Essential selfadjointness of Schrödinger operators with potentials singular along affine subspaces, Hiroshima Mathematical Journal, 11 (1981) no. 2, p. 275–283 MR 620538 | Zbl 0513.35025

[28] Montgomery, Richard A tour of subriemannian geometries, their geodesics and applications, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, 91 (2002) MR 1867362 | Zbl 1044.53022

[29] Neel, Robert The small-time asymptotics of the heat kernel at the cut locus, Comm. Anal. Geom., 15 (2007) no. 4, p. 845–890 Article  MR 2395259 | Zbl 1154.58020

[30] Neel, Robert; Stroock, Daniel Analysis of the cut locus via the heat kernel, Surveys in differential geometry. Vol. IX, Int. Press, Somerville, MA (Surv. Differ. Geom., IX) (2004), p. 337–349 MR 2195412 | Zbl 1081.58013

[31] Pontryagin, L. S.; Boltyanskiĭ, V. G.; Gamkrelidze, R. V.; Mishchenko, E. F. The Mathematical Theory of Optimal Processes, “Nauka”, Moscow (1983) MR 719372 | Zbl 0516.49001

[32] Reed, M.; Simon, B. Methods of modern mathematical physics, Academic press (1980) MR 751959 | Zbl 0459.46001

[33] Simon, B. Essential self-adjointness of Schrödinger operators with singular potentials, Archive for Rational Mechanics and Analysis, 52 (1973) no. 1, p. 44–48 Article  MR 338548 | Zbl 0277.47007

[34] Varadhan, S. R. S. On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., 20 (1967), p. 431–455 Article  MR 208191 | Zbl 0155.16503

[35] Vendittelli, Marilena; Oriolo, Giuseppe; Jean, Frédéric; Laumond, Jean-Paul Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities, IEEE Trans. Automat. Control, 49 (2004) no. 2, p. 261–266 Article  MR 2034349