Contracting rigid germs in higher dimensions  [ Germes rigides contractants en toute dimension ]
Annales de l'Institut Fourier, Tome 63 (2013) no. 5, p. 1913-1950
En suivant Favre, on dit qu’un germe holomorphe f:( d ,0)( d ,0) est rigide si l’union de l’ensemble critique de tous ses itérés est à croisement normaux. Nous donnons une classification partielle des germes rigides contractants en toute dimension à conjugaison holomorphe près. On trouve des nouveaux phénomènes de résonance, entre la différentielle de f et son action linéaire sur le groupe fondamental du complémentaire de l’ensemble critique.
Following Favre, we define a holomorphic germ f:( d ,0)( d ,0) to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of f and its linear action on the fundamental group of the complement of the critical set.
DOI : https://doi.org/10.5802/aif.2818
Classification:  37F25
Mots clés: germes holomorphes, point fixe, germes rigides contractants, formes normales, renormalisation, résonances, ensemble critique.
@article{AIF_2013__63_5_1913_0,
     author = {Ruggiero, Matteo},
     title = {Contracting rigid germs in higher dimensions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {5},
     year = {2013},
     pages = {1913-1950},
     doi = {10.5802/aif.2818},
     mrnumber = {3186512},
     zbl = {06284536},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_2013__63_5_1913_0}
}
Ruggiero, Matteo. Contracting rigid germs in higher dimensions. Annales de l'Institut Fourier, Tome 63 (2013) no. 5, pp. 1913-1950. doi : 10.5802/aif.2818. http://www.numdam.org/item/AIF_2013__63_5_1913_0/

[1] Abate, Marco; Raissy, Jasmin Formal Poincaré-Dulac renormalization for holomorphic germs (to appear in Disc. Cont. Dyn. Syst. (2012). Preprint available at http://arxiv.org/abs/1008.0272) | Zbl pre06157277

[2] Abate, Marco; Tovena, Francesca Formal normal forms for holomorphic maps tangent to the identity, Discrete Contin. Dyn. Syst., (suppl.) (2005), pp. 1-10 | MR 2192654 | Zbl 1144.37435

[3] Berteloot, François Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6), Tome 15 (2006) no. 3, pp. 427-483 | Article | Numdam | MR 2246412 | Zbl 1123.37019

[4] Dloussky, Georges Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.), Tome 14 (1984) | Numdam | MR 763959 | Zbl 0543.32012

[5] Dloussky, Georges Sur la classification des germes d’applications holomorphes contractantes, Math. Ann., Tome 280 (1988) no. 4, pp. 649-661 | Article | MR 939924 | Zbl 0677.32004

[6] Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Class VII 0 surfaces with b 2 curves, Tohoku Math. J. (2), Tome 55 (2003) no. 2, pp. 283-309 | Article | MR 1979500 | Zbl 1034.32012

[7] Favre, Charles Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. (9), Tome 79 (2000) no. 5, pp. 475-514 | Article | MR 1759437 | Zbl 0983.32023

[8] Favre, Charles; Jonsson, Mattias Eigenvaluations, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 2, pp. 309-349 | Numdam | MR 2339287 | Zbl 1135.37018

[9] Kato, Masahide Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo (1978), pp. 45-84 | MR 578853 | Zbl 0421.32010

[10] Kato, Masahide On compact complex 3-folds with lines, Japan. J. Math. (N.S.), Tome 11 (1985) no. 1, pp. 1-58 | MR 877456 | Zbl 0588.32032

[11] Oeljeklaus, Karl; Renaud, Julie Compact complex threefolds of class L associated to polynomial automorphisms of 3 , Publ. Mat., Tome 50 (2006) no. 2, pp. 401-411 | Article | MR 2273667 | Zbl 1118.32017

[12] Raissy, Jasmin Torus actions in the normalization problem, J. Geom. Anal., Tome 20 (2010) no. 2, pp. 472-524 | Article | MR 2579518 | Zbl 1203.37083

[13] Rosay, Jean-Pierre; Rudin, Walter Holomorphic maps from C n to C n , Trans. Amer. Math. Soc., Tome 210 (1988) no. 1, pp. 47-86 | MR 929658 | Zbl 0708.58003

[14] Ruggiero, Matteo Rigidification of holomorphic germs with non-invertible differential, Michigan Math. J., Tome 60 (2011) | Zbl pre06141594

[15] Sternberg, Shlomo Local contractions and a theorem of Poincaré, Amer. J. Math., Tome 79 (1957), pp. 809-824 | Article | MR 96853 | Zbl 0080.29902