Torielli, Michele
Deformations of free and linear free divisors  [ Déformations de diviseurs libres et linéaires libres ]
Annales de l'institut Fourier, Tome 63 (2013) no. 6 , p. 2097-2136
MR 3237442 | Zbl 1301.14004
doi : 10.5802/aif.2824
URL stable : http://www.numdam.org/item?id=AIF_2013__63_6_2097_0

Classification:  14B07,  13D10,  14F40
Mots clés: diviseur libre, diviseur linéaire libre, singularité non isolée, théorie de la déformation, cohomologie de de Rham logarithmique
Nous étudions les déformations de diviseurs libres et linéaires libres. Nous introduisons un complexe similaire au complexe de de Rham dont la cohomologie calcule les espaces de déformations. Cette cohomologie s’avère être zéro pour tous les diviseurs réductifs linéaires libres et être constructible pour les diviseurs libres de Koszul et les diviseurs libres quasi-homogènes.
We study deformations of free and linear free divisors. We introduce a complex similar to the de Rham complex whose cohomology calculates the deformation spaces. This cohomology turns out to be zero for all reductive linear free divisors and to be constructible for Koszul free divisors and weighted homogeneous free divisors.

Bibliographie

[1] Abad, Camilo Arias; Crainic, Marius Representations up to homotopy of Lie algebroids, J. Reine Angew. Math., 663 (2012), p. 91-126 MR 2889707 | Zbl 1238.58010

[2] Buchweitz, R.O.; Mond, D. Linear free divisors and quiver representations, Singularities and computer algebra, 324 (2006), p. 41 Article  MR 2228227 | Zbl 1101.14013

[3] Calderón Moreno, F. J. Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. 4e série, 32 (1999), p. 701–714 Numdam | MR 1710757 | Zbl 0955.14013

[4] Calderón Moreno, F. J.; Narváez Macarro, L. Locally quasi-homogeneous free divisors are Koszul free, Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation, 238 (2002), p. 72–76 MR 1969305 | Zbl 1031.32006

[5] Calderón Moreno, F. J.; Narváez Macarro, L. Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble), 55 (2005) no. 1, p. 47–75 Article  Numdam | MR 2141288 | Zbl 1089.32003

[6] De Gregorio, I.; Mond, D.; Sevenheck, C. Linear free divisors and Frobenius manifolds, Compos. Math, 145 (2009), p. 1305–1350 Article  MR 2551998 | Zbl 1238.32022

[7] Dixmier, Jacques Enveloping algebras, North-Holland Publishing Co., Amsterdam (1977), p. xvi+375 (North-Holland Mathematical Library, Vol. 14, Translated from the French) MR 498740 | Zbl 0346.17010

[8] Granger, M.; Mond, D.; Nieto-Reyes, A.; Schulze, M. Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), 59 (2009) no. 2, p. 811–850 Article  Numdam | MR 2521436 | Zbl 1163.32014

[9] Greuel, G.-M.; Lossen, C.; Shustin, E. Introduction to singularities and deformations, Springer, Berlin, Springer Monographs in Mathematics (2007), p. xii+471 MR 2290112 | Zbl 1125.32013

[10] Hartshorne, Robin Deformation theory, Springer, New York, Graduate Texts in Mathematics, 257 (2010), p. viii+234 MR 2583634 | Zbl 1186.14004

[11] Hochschild, G.; Serre, J.-P. Cohomology of Lie algebras, Annals of Mathematics, 57 (1953) no. 3, p. 591–603 Article  MR 54581 | Zbl 0053.01402

[12] Orlik, P.; Terao, H. Arrangements of hyperplanes, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300 (1992), p. xviii+325 MR 1217488 | Zbl 0757.55001

[13] Rinehart, G. S. Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), p. 195–222 Article  MR 154906 | Zbl 0113.26204

[14] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980) no. 2, p. 265–291 MR 586450 | Zbl 0496.32007

[15] Schlessinger, M. Functors of Artin rings, Trans. Amer. Math. Soc., 130 (1968), p. 208–222 Article  MR 217093 | Zbl 0167.49503

[16] Sevenheck, C. Lagrange-singularitäten und ihre deformationen, Heinrich-Heine Universität, Düsseldorf, Diplomarbeit (1999)

[17] Sevenheck, C. Lagrangian singularities, Cuvillier Verlag, Göttingen (2003), p. x+190 (Dissertation, Johannes-Gutenberg-Universität, Mainz, 2003) MR 2015318 | Zbl 1059.14006

[18] Sevenheck, C.; Van Straten, D. Deformation of singular Lagrangian subvarieties, Math. Ann., 327 (2003) no. 1, p. 79–102 Article  MR 2005122 | Zbl 1051.14006

[19] Torielli, M. Free divisors and their deformations, Univeristy of Warwick (2012) (Ph. D. Thesis)

[20] Weibel, C. A. An introduction to homological algebra, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, 38 (1994), p. xiv+450 MR 1269324 | Zbl 0797.18001