Alper, Jarod
Good moduli spaces for Artin stacks  [ Bons espaces de modules pour les champs d’Artin ]
Annales de l'institut Fourier, Tome 63 (2013) no. 6 , p. 2349-2402
MR 3237451 | Zbl 06325437
doi : 10.5802/aif.2833
URL stable : http://www.numdam.org/item?id=AIF_2013__63_6_2349_0

Classification:  14L24,  14L30,  14J15
Mots clés: champs d’Artin, théorie géométrique des invariants, espaces de modules
Nous développons une théorie qui associe des espaces de modules ayant de bonnes propriétés géométriques des champs d’Artin arbitraires, généralisant ainsi la théorie géométrique des invariants de Mumford et les « champs modérés ».
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.

Bibliographie

[1] Abramovich, Dan; Olsson, Martin; Vistoli, Angelo Tame stacks in positive characteristic, Ann. Inst. Fourier, (Grenoble), 58 (2008) no. 4, p. 1057-1091 Article  Numdam | MR 2427954 | Zbl 1222.14004

[2] Artin, Michael Versal deformations and algebraic stacks, Invent. Math., 27 (1974), p. 165-189 Article  MR 399094 | Zbl 0317.14001

[3] Białynicki-Birula, A. On homogeneous affine spaces of linear algebraic groups, Amer. J. Math., 85 (1963), p. 577-582 Article  MR 186674 | Zbl 0116.38202

[4] Caporaso, Lucia A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7 (1994) no. 3, p. 589-660 Article  MR 1254134 | Zbl 0827.14014

[5] Conrad, Brian Keel-mori theorem via stacks (2005) (http://www.math.stanford.edu/~bdconrad/papers/coarsespace.pdf)

[6] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, p. 75-109 Article  Numdam | MR 262240 | Zbl 0181.48803

[7] Faltings, Gerd; Chai, Ching-Li Degeneration of abelian varieties, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 22 (1990) (with an appendix by David Mumford) MR 1083353 | Zbl 0744.14031

[8] Fogarty, John Geometric quotients are algebraic schemes, Adv. in Math., 48 (1983) no. 2, p. 166-171 Article  MR 700982 | Zbl 0556.14023

[9] Fogarty, John Finite generation of certain subrings, Proc. Amer. Math. Soc., 99 (1987) no. 1, p. 201-204 MR 866454 | Zbl 0627.13006

[10] Gieseker, D. On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2), 106 (1977) no. 1, p. 45-60 Article  MR 466475 | Zbl 0381.14003

[11] Grothendieck, Alexander Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. (1961-1967) no. 4,8,11,17,20,24,28,32 Numdam | Zbl 0122.16102

[12] Haboush, W. J. Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math., 100 (1978) no. 6, p. 1123-1137 Article  MR 522693 | Zbl 0432.14029

[13] Hassett, Brendan Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory, Birkhäuser Boston, Boston, MA (Progr. Math.) 235 (2005), p. 169-192 MR 2166084 | Zbl 1094.14017

[14] Hassett, Brendan; Hyeon, Donghoon Log minimal model program for the moduli space of stable curves: The first flip (2008) (math.AG/0806.3444) Zbl 1273.14034

[15] Hassett, Brendan; Hyeon, Donghoon Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc., 361 (2009) no. 8, p. 4471-4489 Article  MR 2500894 | Zbl 1172.14018

[16] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Friedr. Vieweg & Sohn, Braunschweig, Aspects of Mathematics, E31 (1997) MR 1450870 | Zbl 0872.14002

[17] Hyeon, Donghoon; Lee, Yongnam Log minimal model program for the moduli space of stable curves of genus three (2007) (math.AG/0703093) MR 2661168 | Zbl 1230.14035

[18] Hyeon, Donghoon; Lee, Yongnam Stability of tri-canonical curves of genus two, Math. Ann., 337 (2007) no. 2, p. 479-488 Article  MR 2262795 | Zbl 1111.14017

[19] Keel, Seán; Mori, Shigefumi Quotients by groupoids, Ann. of Math., 145 (1997) no. 1, p. 193-213 Article  MR 1432041 | Zbl 0881.14018

[20] Knop, Friedrich; Kraft, Hanspeter; Vust, Thierry The Picard group of a G-variety, Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser, Basel (DMV Sem.) 13 (1989), p. 77-87 MR 1044586 | Zbl 0705.14005

[21] Knutson, Donald Algebraic spaces, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 203 (1971) MR 302647 | Zbl 0221.14001

[22] Kraft, Hanspeter G-vector bundles and the linearization problem, Group actions and invariant theory (Montreal, PQ, 1988), Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) 110 (1989), p. 111-123 MR 1021283 | Zbl 0703.14009

[23] Laumon, Gérard; Moret-Bailly, Laurent Champs algébriques, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 39 (2000) Zbl 0945.14005

[24] Lieblich, Max Moduli of twisted sheaves, Duke Math. J., 138 (2007) no. 1, p. 23-118 Article  MR 2309155 | Zbl 1122.14012

[25] Luna, Domingo Slices étalés, Sur les groupes algébriques, Soc. Math. France, Paris (Bull. Soc. Math. France, Mémoire) 33 (1973), p. 81-105 Numdam | MR 342523 | Zbl 0286.14014

[26] Maruyama, Masaki Moduli of stable sheaves. I, J. Math. Kyoto Univ., 17 (2007) no. 1, p. 91-126 (MR0450271 (56 #8567)) MR 450271 | Zbl 0374.14002

[27] Matsushima, Yozô Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J, 16 (1960), p. 205-218 MR 109854 | Zbl 0094.28201

[28] Melo, Margarida Compactified picard stacks over the moduli stack of stable curves with marked points (2008) (math.AG/0811.0763) Zbl 1208.14010

[29] Mumford, D.; Fogarty, J.; Kirwan, F. Geometric invariant theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34 (1994) MR 1304906 | Zbl 0797.14004

[30] Mumford, David Geometric invariant theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, 22 (1965) MR 214602 | Zbl 0147.39304

[31] Nagata, Masayoshi On the 14-th problem of Hilbert, Amer. J. Math., 81 (1959), p. 766-772 Article  MR 105409 | Zbl 0192.13801

[32] Nagata, Masayoshi Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ., 1 (1961/1962), p. 87-99 MR 142667 | Zbl 0106.25201

[33] Nagata, Masayoshi Invariants of a group in an affine ring, J. Math. Kyoto Univ., 3 (1963/1964), p. 369-377 MR 179268 | Zbl 0146.04501

[34] Nironi, Fabio Moduli spaces of semistable sheaves on projective deligne-mumford stacks (2008) (math.AG/0811.1949)

[35] Olsson, Martin Sheaves on Artin stacks, J. Reine Angew. Math., 603 (2007), p. 55-112 MR 2312554 | Zbl 1137.14004

[36] Raynaud, Michel; Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., 13 (1971), p. 1-89 Article  MR 308104 | Zbl 0227.14010

[37] Richardson, R. W. Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc., 9 (1977) no. 1, p. 38-41 Article  MR 437549 | Zbl 0355.14020

[38] Rydh, David Noetherian approximation of algebraic spaces and stacks (2010) (math.AG/0904.0227v3)

[39] Rydh, David Existence and properties of geometric quotients, J. Algebraic Geom. (2013) (to appear) Article  MR 3084720 | Zbl 1278.14003

[40] Schémas en groupes, Springer-Verlag, Berlin, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, 151,152,153 (1962/1964)

[41] Schubert, David A new compactification of the moduli space of curves, Compositio Math., 78 (1991) no. 3, p. 297-313 Numdam | MR 1106299 | Zbl 0735.14022

[42] Seshadri, C. S. Geometric reductivity over arbitrary base, Advances in Math., 26 (1977) no. 3, p. 225-274 Article  MR 466154 | Zbl 0371.14009

[43] Seshadri, C. S. Fibrés vectoriels sur les courbes algébriques, Société Mathématique de France, Paris, Astérisque, 96 (1982) (Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980) MR 699278 | Zbl 0517.14008

[44] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, p. 47-129 Article  Numdam | MR 1307297 | Zbl 0891.14005

[45] Vistoli, Angelo Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, Amer. Math. Soc., Providence, RI (Math. Surveys Monogr.) 123 (2005), p. 1-104 MR 2223406