Nous montrons que l’espace de modules des variétés symplectiques irréductibles polarisées de type , le type de polarisation étant fixé, n’est pas nécessairement connexe. Cela peut être obtenu comme une conséquence de la caractérisation de Markman des opérateurs de transport parallèle polarisé de type .
We show that the moduli space of polarized irreducible symplectic manifolds of -type, of fixed polarization type, is not always connected. This can be derived as a consequence of Eyal Markman’s characterization of polarized parallel-transport operators of -type.
Keywords: number of connected components, monodromy invariant, irreducible symplectic manifolds
Mot clés : nombre de composantes connexes, invariant de monodromie, variétés symplectiques irréductibles
@article{AIF_2014__64_1_189_0, author = {Apostolov, Apostol}, title = {Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected}, journal = {Annales de l'Institut Fourier}, pages = {189--202}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2844}, zbl = {06387271}, mrnumber = {3330546}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2844/} }
TY - JOUR AU - Apostolov, Apostol TI - Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected JO - Annales de l'Institut Fourier PY - 2014 SP - 189 EP - 202 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2844/ DO - 10.5802/aif.2844 LA - en ID - AIF_2014__64_1_189_0 ER -
%0 Journal Article %A Apostolov, Apostol %T Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected %J Annales de l'Institut Fourier %D 2014 %P 189-202 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2844/ %R 10.5802/aif.2844 %G en %F AIF_2014__64_1_189_0
Apostolov, Apostol. Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 189-202. doi : 10.5802/aif.2844. http://archive.numdam.org/articles/10.5802/aif.2844/
[1] Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, p. 755-782 (1984) http://projecteuclid.org/getRecord?id=euclid.jdg/1214438181 | MR | Zbl
[2] On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb., Volume 22 (1974), pp. 580-583 | DOI | MR | Zbl
[3] Moduli of surfaces and Irreducible Symplectic Manifolds, 2010 (arXiv:math/10124155v1) | Zbl
[4] Moduli spaces of irreducible symplectic manifolds, Compos. Math., Volume 146 (2010) no. 2, pp. 404-434 | DOI | MR | Zbl
[5] Compact hyper-Kähler manifolds: basic results, Invent. Math., Volume 135 (1999) no. 1, pp. 63-113 | DOI | MR | Zbl
[6] Moduli spaces of hyperkähler manifolds and mirror symmetry, Intersection theory and moduli (ICTP Lect. Notes, XIX), Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, p. 185-247 (electronic) | MR | Zbl
[7] Faithful Monodromy Invariant for Polarized Irreducible Symplectic Manifolds of -type, 2010 (an unpublished note)
[8] A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322 | DOI | MR | Zbl
[9] Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math., Volume 53 (2013) no. 2, pp. 345-403 | DOI | MR | Zbl
[10] On the moduli space of bundles on surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) (Tata Inst. Fund. Res. Stud. Math.), Volume 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341-413 | MR | Zbl
[11] Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979), pp. 111-177 (Moscow) | MR | Zbl
[12] Desingularized moduli spaces of sheaves on a , J. Reine Angew. Math., Volume 512 (1999), pp. 49-117 | DOI | MR | Zbl
[13] A new six-dimensional irreducible symplectic variety, J. Algebraic Geom., Volume 12 (2003) no. 3, pp. 435-505 | DOI | MR | Zbl
[14] Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble, Volume 6 (1955–1956), pp. 1-42 | DOI | Numdam | MR | Zbl
[15] A global Torelli theorem for hyperkähler manifolds, 2010 (preprint, arXiv:math/09084121v6)
[16] Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 30, Springer-Verlag, Berlin, 1995, pp. viii+320 | MR | Zbl
Cité par Sources :