Soit
Let
Keywords: Viscosity solution, viscosity subsolution, nonlinear second-order elliptic equations, restriction, submanifold, pluripotential theory
Mot clés : solution de viscosité, sous-solution de viscosité, équations elliptiques non-linéaires de second ordre, restriction, sous-variété, théorie pluripotentielle
@article{AIF_2014__64_1_217_0, author = {Harvey, F. Reese and Lawson, H. Blaine Jr.}, title = {The restriction theorem for fully nonlinear subequations}, journal = {Annales de l'Institut Fourier}, pages = {217--265}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2846}, mrnumber = {3330548}, zbl = {1320.32037}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2846/} }
TY - JOUR AU - Harvey, F. Reese AU - Lawson, H. Blaine Jr. TI - The restriction theorem for fully nonlinear subequations JO - Annales de l'Institut Fourier PY - 2014 SP - 217 EP - 265 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2846/ DO - 10.5802/aif.2846 LA - en ID - AIF_2014__64_1_217_0 ER -
%0 Journal Article %A Harvey, F. Reese %A Lawson, H. Blaine Jr. %T The restriction theorem for fully nonlinear subequations %J Annales de l'Institut Fourier %D 2014 %P 217-265 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2846/ %R 10.5802/aif.2846 %G en %F AIF_2014__64_1_217_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The restriction theorem for fully nonlinear subequations. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 217-265. doi : 10.5802/aif.2846. https://www.numdam.org/articles/10.5802/aif.2846/
[1] Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables, Bull. Sci. Math., Volume 127 (2003) no. 1, pp. 1-35 | DOI | MR | Zbl
[2] Quaternionic Monge-Ampère equations, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 205-238 | DOI | MR | Zbl
[3] Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal., Volume 16 (2006) no. 3, pp. 375-399 | DOI | MR | Zbl
[4] The Dirichlet problem for the equation Det
[5] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl
[6] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 246-276 | MR | Zbl
[7] Viscosity solutions: a primer, Viscosity solutions and applications (Montecatini Terme, 1995) (Lecture Notes in Math.), Volume 1660, Springer, Berlin, 1997, pp. 1-43 | MR | Zbl
[8] User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[9] Hyperbolic polynomials and the Dirichlet problem (ArXiv:0912.5220)
[10] Potential theory on almost complex manifolds Ann. Inst. Fourier (to appear). ArXiv:1107.2584
[11] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl
[12] Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | MR | Zbl
[13] Duality of positive currents and plurisubharmonic functions in calibrated geometry, Amer. J. Math., Volume 131 (2009) no. 5, pp. 1211-1239 | DOI | MR | Zbl
[14] An introduction to potential theory in calibrated geometry, Amer. J. Math., Volume 131 (2009) no. 4, pp. 893-944 | DOI | MR | Zbl
[15] Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differential Geom., Volume 88 (2011) no. 3, pp. 395-482 | MR | Zbl
[16] Plurisubharmonicity in a general geometric context, Geometry and analysis. No. 1 (Adv. Lect. Math. (ALM)), Volume 17, Int. Press, Somerville, MA, 2011, pp. 363-402 | Zbl
[17] Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Surveys in Geometry, Volume 18, International Press, Sommerville, MA, 2013, pp. 103-156
[18]
[19] On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR | Zbl
[20] Lectures on minimal submanifolds. Vol. I, Mathematics Lecture Series, 9, Publish or Perish Inc., Wilmington, Del., 1980, pp. iv+178 | MR | Zbl
[21] Some integration problems in almost-complex and complex manifolds., Ann. of Math. (2), Volume 77 (1963), pp. 424-489 | DOI | MR | Zbl
[22] Fonctions plurisousharmoniques et courants positifs de type
[23] The Bremermann-Dirichlet problem for
- The Minimum Principle for Convex Subequations, The Journal of Geometric Analysis, Volume 32 (2022) no. 1 | DOI:10.1007/s12220-021-00782-2
- Pseudoconvexity for the special Lagrangian potential equation, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 1 | DOI:10.1007/s00526-020-01850-1
- Pseudoconvexity for the Special Lagrangian Potential Equation, arXiv (2020) | DOI:10.48550/arxiv.2001.09818 | arXiv:2001.09818
- Tangents to Subsolutions Existence and Uniqueness, II, The Journal of Geometric Analysis, Volume 27 (2017) no. 3, p. 2190 | DOI:10.1007/s12220-016-9757-0
- Removable singularities for degenerate elliptic equations without conditions on the growth of the solution, Transactions of the American Mathematical Society, Volume 370 (2017) no. 4, p. 2679 | DOI:10.1090/tran/7095
- Lagrangian potential theory and a Lagrangian equation of Monge-Ampère type, arXiv (2017) | DOI:10.48550/arxiv.1712.03525 | arXiv:1712.03525
- The Dirichlet problem with prescribed interior singularities, Advances in Mathematics, Volume 303 (2016), p. 1319 | DOI:10.1016/j.aim.2016.08.024
- The Dirichlet Problem with Prescribed Asymptotic Singularities, arXiv (2015) | DOI:10.48550/arxiv.1508.02962 | arXiv:1508.02962
- Existence, Uniqueness and Removable Singularities for Nonlinear Partial Differential Equations in Geometry, arXiv (2013) | DOI:10.48550/arxiv.1303.1117 | arXiv:1303.1117
- Removable singularities for nonlinear subequations, arXiv (2013) | DOI:10.48550/arxiv.1303.0437 | arXiv:1303.0437
- Geometric plurisubharmonicity and convexity - an introduction, arXiv (2011) | DOI:10.48550/arxiv.1111.3875 | arXiv:1111.3875
Cité par 11 documents. Sources : Crossref, NASA ADS