Breteaux, Sébastien
A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach  [ Une dérivation géométrique de l’équation de Boltzmann linéaire pour une particule en interaction avec un champ aléatoire gaussien, utilisant l’espace de Fock ]
Annales de l'institut Fourier, Tome 64 (2014) no. 3 , p. 1031-1076
MR 3330163 | Zbl 06387300
doi : 10.5802/aif.2873
URL stable : http://www.numdam.org/item?id=AIF_2014__64_3_1031_0

Classification:  82C10,  60K37,  81Exx,  81Sxx,  81D30,  82B44,  82C40
Mots clés: Équation de Boltzmann linéaire, processus dans des environnements aléatoires, théorie quantique des champs, états cohérents, théorie cinétique des gaz
Dans cet article, l’équation de Boltzmann linéaire est dérivée pour une particule interagissant avec un champ aléatoire gaussien, dans la limite de faible couplage, avec un renouvellement temporel du champ aléatoire. L’état initial peut être choisi de façon arbitraire. La démonstration est géométrique et fait intervenir des états cohérents et du calcul semi-classique.
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

Bibliographie

[1] Ammari, Zied; Nier, Francis Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, 9 (2008) no. 8, p. 1503–1574 Article  MR 2465733 | Zbl 1171.81014

[2] Ammari, Zied; Nier, Francis Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., 50 (2009) no. 4, p. 042107, 16 Article  MR 2513969 | Zbl 1214.81089

[3] Attal, Stéphane; Joye, Alain Weak coupling and continuous limits for repeated quantum interactions, J. Stat. Phys., 126 (2007) no. 6, p. 1241–1283 Article  MR 2312948 | Zbl 1152.82013

[4] Attal, Stéphane; Pautrat, Yan From repeated to continuous quantum interactions, Ann. Henri Poincaré, 7 (2006) no. 1, p. 59–104 Article  MR 2205464 | Zbl 1099.81040

[5] Bal, Guillaume; Papanicolaou, George; Ryzhik, Leonid Radiative transport limit for the random Schrödinger equation, Nonlinearity, 15 (2002) no. 2, p. 513–529 Article  MR 1888863 | Zbl 0999.60061

[6] Bechouche, Philippe; Poupaud, Frédéric; Soler, Juan Quantum transport and Boltzmann operators, J. Stat. Phys., 122 (2006) no. 3, p. 417–436 Article  MR 2205910 | Zbl 1149.82338

[7] Berezin, Feliks A. The method of second quantization, Academic Press, New York (1966), p. xii+228 MR 208930 | Zbl 0151.44001

[8] Boldrighini, Carlo; Bunimovich, Leonid A.; Sinaĭ, Yakov G. On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., 32 (1983) no. 3, p. 477–501 MR 725107 | Zbl 0583.76092

[9] Bratteli, Ola; Robinson, Derek W. Operator algebras and quantum statistical mechanics. 2, Springer-Verlag, Berlin, Texts and Monographs in Physics (1997), p. xiv+519 (Equilibrium states. Models in quantum statistical mechanics) MR 1441540 | Zbl 0421.46048

[10] Burq, Nicolas Mesures semi-classiques et mesures de défaut, Astérisque (1997) no. 245, p. Exp. No. 826, 4, 167–195 (Séminaire Bourbaki, Vol. 1996/97) Numdam | MR 1627111 | Zbl 0954.35102

[11] Chen, Thomas Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3, J. Stat. Phys., 120 (2005) no. 1-2, p. 279–337 Article  MR 2165532 | Zbl 1142.82008

[12] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Masson, Paris, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series] (1984), p. xxiii+1411 MR 792484 | Zbl 0664.47003

[13] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3, Masson, Paris, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series] (1985), p. xxxiv+1303 Zbl 0642.35001

[14] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams, Comm. Math. Phys., 271 (2007) no. 1, p. 1–53 Article  MR 2283953 | Zbl 1205.82123

[15] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit, Acta Math., 200 (2008) no. 2, p. 211–277 Article  MR 2413135 | Zbl 1155.82015

[16] Erdös, László; Yau, Horng-Tzer Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000) no. 6, p. 667–735 Article  Zbl 1028.82010

[17] Folland, Gerald B. Quantum field theory, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, 149 (2008), p. xii+325 (A tourist guide for mathematicians) MR 2436991 | Zbl 1155.81003

[18] Gallavotti, Giovanni Divergences and the Approach to Equilibrium in the Lorentz and the Wind-Tree Models, Phys. Rev., 185 (1969) no. 1, p. 308–322 Article 

[19] Gérard, Patrick Mesures semi-classiques et ondes de Bloch, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytech., Palaiseau (1991), p. Exp. No. XVI, 19 Numdam | MR 1131589 | Zbl 0739.35096

[20] Gérard, Patrick Microlocal defect measures, Comm. Partial Differential Equations, 16 (1991) no. 11, p. 1761–1794 Article  MR 1135919 | Zbl 0770.35001

[21] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997) no. 4, p. 323–379 Article  MR 1438151 | Zbl 0881.35099

[22] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Erratum: “Homogenization limits and Wigner transforms” [Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379; MR1438151 (98d:35020)], Comm. Pure Appl. Math., 53 (2000) no. 2, p. 280–281 Article  MR 1438151 | Zbl 0881.35099

[23] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys., 66 (1979) no. 1, p. 37–76 MR 530915 | Zbl 0443.35067

[24] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys., 68 (1979) no. 1, p. 45–68 MR 539736 | Zbl 0443.35068

[25] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. I. Borel summability for bounded potentials, Ann. Physics, 128 (1980) no. 2, p. 243–285 MR 602197 | Zbl 0447.47026

[26] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. II. Asymptotic expansions for general potentials, Ann. Inst. H. Poincaré Sect. A (N.S.), 33 (1980) no. 4, p. 363–394 Numdam | MR 605198 | Zbl 0457.47039

[27] Glimm, James; Jaffe, Arthur Quantum physics, Springer-Verlag, New York (1987), p. xxii+535 (A functional integral point of view) MR 887102 | Zbl 0461.46051

[28] Hepp, Klaus The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), p. 265–277 MR 332046

[29] Ho, Ting-Guo; Landau, Lawrence J.; Wilkins, A. J. On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys., 5 (1993) no. 2, p. 209–298 Article  Zbl 0816.46079

[30] Lions, Pierre-Louis; Paul, Thierry Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993) no. 3, p. 553–618 MR 1251718 | Zbl 0801.35117

[31] Martinez, André An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, Universitext (2002), p. viii+190 MR 1872698 | Zbl 0994.35003

[32] Poupaud, Frédéric; Vasseur, Alexis Classical and quantum transport in random media, J. Math. Pures Appl. (9), 82 (2003) no. 6, p. 711–748 Article  MR 1996779 | Zbl 1035.82037

[33] Reed, Michael; Simon, Barry Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975), p. xv+361 MR 493420 | Zbl 0242.46001

[34] Reed, Michael; Simon, Barry Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1979), p. xv+463 (Scattering theory) MR 529429 | Zbl 0405.47007

[35] Simon, Barry The P(φ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J. (1974), p. xx+392 (Princeton Series in Physics) MR 489552 | Zbl 1175.81146

[36] Spohn, Herbert Derivation of the transport equation for electrons moving through random impurities, J. Statist. Phys., 17 (1977) no. 6, p. 385–412 MR 471824 | Zbl 0964.82508

[37] Spohn, Herbert Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., 52 (1980) no. 3, p. 569–615 Article  MR 578142 | Zbl 0399.60082