Vector fields, separatrices and Kato surfaces  [ Champs de vecteurs, séparatrices et surfaces de Kato ]
Annales de l'Institut Fourier, Tome 64 (2014) no. 3, p. 1331-1361
On prouve qu’un espace analytique complexe de dimension deux admettant un champ de vecteurs complet qui n’a pas de séparatrice passant par un point singulier de la surface s’obtient à partir d’une surface de Kato en effondrant un diviseur (en particulier, l’espace est compact). On prouve que, dans un espace analytique de Stein de dimension deux muni d’un champ de vecteurs complet, un point singulier de l’espace qui est un point d’équilibre isolé du champ est soit une singularité quasi-homogène, soit une singularité de Klein. On redémontre quelques résultats concernant la classification des surfaces complexes compactes admettant des champs de vecteurs holomorphes. Les preuves reposent sur des travaux récents de Rebelo et de l’auteur donnant une description combinatoire des champs de vecteurs complets.
We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.
DOI : https://doi.org/10.5802/aif.2882
Classification:  32S65,  32C20,  34M45
Mots clés: semicomplétude, séparatrice, champ de vecteurs, surface de Kato, surface de Stein.
@article{AIF_2014__64_3_1331_0,
     author = {Guillot, Adolfo},
     title = {Vector fields, separatrices and~Kato~surfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {3},
     year = {2014},
     pages = {1331-1361},
     doi = {10.5802/aif.2882},
     mrnumber = {3330172},
     zbl = {06387309},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2014__64_3_1331_0}
}
Guillot, Adolfo. Vector fields, separatrices and Kato surfaces. Annales de l'Institut Fourier, Tome 64 (2014) no. 3, pp. 1331-1361. doi : 10.5802/aif.2882. https://www.numdam.org/item/AIF_2014__64_3_1331_0/

[1] Barth, W.; Peters, C.; Van De Ven, A. Compact complex surfaces, Springer-Verlag, Berlin Tome 4 (1984), pp. x+304 | MR 749574 | Zbl 1036.14016

[2] Bondil, Romain; Lê, Dũng Tráng Résolution des singularités de surfaces par éclatements normalisés (multiplicité, multiplicité polaire, et singularités minimales), Trends in singularities, Birkhäuser, Basel (Trends Math.) (2002), pp. 31-81

[3] Briot; Bouquet Recherches sur les propriétés des fonctions définies par des équations différentielles, Comptes rendus hebdomadaires des scéances de l’Académie des Sciences, Tome 39 (1854), pp. 368-371

[4] Brunella, Marco Birational geometry of foliations, IMPA, Rio de Janeiro, Publicações Matemáticas do IMPA (2004), pp. iv+138 | MR 2114696 | Zbl 1073.14022

[5] Brunella, Marco Nonuniformisable foliations on compact complex surfaces, Mosc. Math. J., Tome 9 (2009) no. 4, p. 729-748, 934 | MR 2657280 | Zbl 1194.32008

[6] Camacho, C.; Movasati, H.; Scárdua, B. The moduli of quasi-homogeneous Stein surface singularities, J. Geom. Anal., Tome 19 (2009) no. 2, pp. 244-260 | Article | MR 2481961 | Zbl 1186.32007

[7] Camacho, César Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann., Tome 282 (1988) no. 2, pp. 177-184 | Article | MR 963011 | Zbl 0657.32007

[8] Camacho, César; Sad, Paulo Invariant varieties through singularities of holomorphic vector fields, Ann. of Math., Tome 115 (1982) no. 3, pp. 579-595 | Article | MR 657239 | Zbl 0503.32007

[9] Camacho, César; Sad, Paulo Pontos singulares de equações diferenciais analí ticas, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 16 o Colóquio Brasileiro de Matemática (1987), pp. iv+132

[10] Dloussky, G.; Oeljeklaus, K. Vector fields and foliations on compact surfaces of class VII 0 , Ann. Inst. Fourier (Grenoble), Tome 49 (1999) no. 5, pp. 1503-1545 | Numdam | MR 1723825 | Zbl 0978.32021

[11] Dloussky, Georges Structure des surfaces de Kato, Mém. Soc. Math. France (1984) no. 14, pp. ii+120 | Numdam | MR 763959 | Zbl 0543.32012

[12] Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Surfaces de la classe VII 0 admettant un champ de vecteurs, Comment. Math. Helv., Tome 75 (2000) no. 2, pp. 255-270 | Article | MR 1774705 | Zbl 0984.32009

[13] Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Surfaces de la classe VII 0 admettant un champ de vecteurs. II, Comment. Math. Helv., Tome 76 (2001) no. 4, pp. 640-664 | Article | MR 1881701 | Zbl 1011.32014

[14] Favre, Charles Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl., Tome 79 (2000) no. 5, pp. 475-514 | Article | MR 1759437 | Zbl 0983.32023

[15] Ghys, E.; Rebelo, J.-C. Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 4, pp. 1117-1174 | Numdam | MR 1488247 | Zbl 0938.32019

[16] Ghys, Étienne À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes, Rend. Circ. Mat. Palermo (2), Tome 49 (2000) no. 1, pp. 175-180 | MR 1753461 | Zbl 0953.32016

[17] Guillot, Adolfo; Rebelo, Julio Semicomplete meromorphic vector fields on complex surfaces, J. Reine Angew. Math., Tome 667 (2012), pp. 27-65 | Article | MR 2929671 | Zbl 1250.32023

[18] Kato, Masahide Compact complex manifolds containing “global” spherical shells, Proc. Japan Acad., Tome 53 (1977) no. 1, p. 15-16 | MR 440076 | Zbl 0379.32023

[19] Orlik, Peter; Wagreich, Philip Isolated singularities of algebraic surfaces with C * action, Ann. of Math., Tome 93 (1971), pp. 205-228 | MR 284435 | Zbl 0212.53702

[20] Palais, Richard S. A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No., Tome 22 (1957), pp. iii+123 | MR 121424 | Zbl 0178.26502

[21] Rebelo, Julio C. Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble), Tome 46 (1996) no. 2, pp. 411-428 | Numdam | MR 1393520 | Zbl 0853.34002

[22] Rebelo, Julio C. Champs complets avec singularités non isolées sur les surfaces complexes, Bol. Soc. Mat. Mexicana (3), Tome 5 (1999) no. 2, pp. 359-395 | MR 1738417 | Zbl 0948.34067

[23] Rebelo, Julio C. Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse Math., Tome 9 (2000) no. 4, pp. 735-763 | Numdam | MR 1838147 | Zbl 1002.32025

[24] Rossi, Hugo Vector Fields on Analytic Spaces, Ann. of Math. (2), Tome 78 (1963) no. 3, pp. 455-467 | MR 162973 | Zbl 0129.29701

[25] Sánchez-Bringas, Federico Normal forms of invariant vector fields under a finite group action, Publ. Mat., Tome 37 (1993) no. 1, pp. 75-82 | MR 1240923 | Zbl 0872.58057

[26] Seidenberg, A. Derivations and integral closure, Pacific J. Math., Tome 16 (1966), pp. 167-173 | MR 188247 | Zbl 0133.29202

[27] Zariski, Oscar The reduction of the singularities of an algebraic surface, Ann. of Math. (2), Tome 40 (1939), pp. 639-689 | MR 159 | Zbl 0021.25303