Adler, Mark; Nordenstam, Eric; Van Moerbeke, Pierre
The Dyson Brownian Minor Process  [ Le Processus Brownien des mineurs de Dyson ]
Annales de l'institut Fourier, Tome 64 (2014) no. 3 , p. 971-1009
MR 3330161 | Zbl 06387298
doi : 10.5802/aif.2871
URL stable : http://www.numdam.org/item?id=AIF_2014__64_3_971_0

Classification:  60B20,  60G55,  60J65,  60J10
Mots clés: Mouvement Brownien de Dyson, le noyau “bead”, noyaux étendus, l’ensemble unitaire gaussien (GUE)
Nous considérons une processus stochastique fourni par une matrice {H t } t0 de taille n, dont les éléments évoluent selon un processus d’Ornstein-Uhlenbeck. Les valeurs propres de H t évoluent selon un mouvement Brownien de Dyson, c’est-à-dire qu’elles décrivent n processus d’Ornstein-Uhlenbeck répulsifs. Dans cet article, nous considérons non seulement les valeurs propres de la matrice elle-même, mais aussi les valeurs propres combinées avec celles des mineurs principaux  ; c’est-à-dire les valeurs propres des sous-matrices dans le coin supérieur gauche de la matrice H t . Ce processus, projeté sur des chemins “spatiaux” appropriés, est un processus déterminantal dont nous fournissons le noyau  ; en outre, le noyau GUE-mineur et le noyau du processus de Dyson apparaissent tous deux comme des cas particuliers. La limite dans le “bulk” de ce noyau fournit une généralisation, dépendante du temps, du noyau “bead” de Boutillier. Nous calculons également le noyau pour un processus de mouvements browniens entrelacés introduit par Warren  ; celui-ci est également un processus déterminantal le long de chemins spatiaux.
Consider an n×n Hermitean matrix valued stochastic process {H t } t0 where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect. In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the k×k minors in the upper left corner of H t . Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases. In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel. We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.

Bibliographie

[1] Adler, Mark; Van Moerbeke, Pierre PDEs for the joint distributions of the Dyson, Airy and sine processes, Ann. Probab., 33 (2005) no. 4, p. 1326–1361 MR 2150191 | Zbl 1093.60021

[2] Adler, Mark; Nordenstam, Eric; Van Moerbeke, Pierre Dyson’s Brownian motions on the spectra of consecutive minors, Stoch. Processes and their Appl., 124 (2014), p. 2023–2051 MR 3188348

[3] Baryshnikov, Yu. GUEs and queues, Probab. Theory Related Fields, 119 (2001) no. 2, p. 256–274 MR 1818248 | Zbl 0980.60042

[4] Bender, Martin Global fluctuations in general β Dyson’s Brownian motion, Stochastic Process. Appl., 118 (2008) no. 6, p. 1022–1042 MR 2418256 | Zbl 1139.60342

[5] Borodin, Alexei Determinantal point processes, The Oxford handbook of random matrix theory, Oxford University Press, Oxford (2011), p. 231–249 MR 2932631 | Zbl 1238.60055

[6] Borodin, Alexei; Ferrari, Patrik L. Large time asymptotics of growth models on space-like paths. I. PushASEP, Electron. J. Probab., 13 (2008), p. no. 50, 1380–1418 MR 2438811 | Zbl 1187.82084

[7] Borodin, Alexei; Ferrari, Patrik L.; Prähofer, Michael; Sasamoto, Tomohiro Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys., 129 (2007) no. 5-6, p. 1055–1080 MR 2363389 | Zbl 1136.82028

[8] Borodin, Alexei; Ferrari, Patrik L.; Prähofer, Michael; Sasamoto, Tomohiro; Warren, Jon Maximum of Dyson Brownian motion and non-colliding systems with a boundary, Electron. Commun. Probab., 14 (2009), p. 486–494 MR 2559098 | Zbl 1189.60169

[9] Borodin, Alexei; Ferrari, Patrik L.; Sasamoto, Tomohiro Two speed TASEP, J. Stat. Phys., 137 (2009) no. 5-6, p. 936–977 MR 2570757 | Zbl 1183.82062

[10] Borodin, Alexei; Rains, Eric M. Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys., 121 (2005) no. 3-4, p. 291–317 MR 2185331 | Zbl 1127.82017

[11] Boutillier, Cédric The bead model and limit behaviors of dimer models, Ann. Probab., 37 (2009) no. 1, p. 107–142 MR 2489161 | Zbl 1171.82006

[12] Defosseux, Manon Orbit measures and interlaced determinantal point processes, C. R. Acad. Sci. Paris, Series I, 346 (2008) no. 13-14, p. 783–788 MR 2427082 | Zbl 1157.60027

[13] Defosseux, Manon Orbit measures, random matrix theory and interlaced determinantal processes, C. R. Acad. Sci. Paris, 46 (2010) no. 1, p. 209-249 Numdam | MR 2641777 | Zbl 1216.15024

[14] Doob, Joseph L. Classical potential theory and its probabilistic counterpart, Springer-Verlag, Berlin, Classics in Mathematics (2001), p. xxvi+846 (Reprint of the 1984 edition) MR 1814344 | Zbl 0990.31001

[15] Dyson, Freeman J. A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys., 3 (1962), p. 1191–1198 MR 148397 | Zbl 0111.32703

[16] Eichelsbacher, Peter; König, Wolfgang Ordered random walks, Electron. J. Probab., 13 (2008), p. no. 46, 1307–1336 MR 2430709 | Zbl 1189.60092

[17] Ferrari, Patrik L.; Frings, René On the partial connection between random matrices and interacting particle systems, J. Stat. Phys., 141 (2010), p. 613–637 MR 2733398 | Zbl 1205.82104

[18] Forrester, Peter J.; Nagao, Taro Determinantal correlations for classical projection processes, J. Stat. Mech.: Theory and Exp., 8 (2011) no. 8 (P08011)

[19] Forrester, Peter J.; Nordenstam, Eric The anti-symmetric GUE minor process, Mosc. Math. J., 9 (2009) no. 4, p. 749–774, 934 MR 2663989 | Zbl 1191.15032

[20] Johansson, Kurt Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields, 123 (2002) no. 2, p. 225–280 MR 1900323 | Zbl 1008.60019

[21] Johansson, Kurt Discrete polynuclear growth and determinantal processes, Comm. Math. Phys., 242 (2003) no. 1-2, p. 277–329 MR 2018275 | Zbl 1031.60084

[22] Johansson, Kurt The arctic circle boundary and the Airy process, Ann. Probab., 33 (2005) no. 1, p. 1–30 MR 2118857 | Zbl 1096.60039

[23] Johansson, Kurt Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. Inst. Fourier (Grenoble), 55 (2005) no. 6, p. 2129–2145 Numdam | MR 2187949 | Zbl 1083.60079

[24] Johansson, Kurt Random matrices and determinantal processes, Mathematical statistical physics, Elsevier B. V., Amsterdam (2006), p. 1–55 MR 2581882

[25] Johansson, Kurt; Nordenstam, Eric Eigenvalues of GUE minors, Electron. J. Probab., 11 (2006), p. no. 50, 1342–1371 MR 2268547 | Zbl 1127.60047

[26] Johansson, Kurt; Nordenstam, Eric Erratum to: “Eigenvalues of GUE minors” [Electron. J. Probab. 11 (2006), no. 50, 1342–1371; MR2268547], Electron. J. Probab., 12 (2007), p. 1048–1051 (electronic) MR 2268547 | Zbl 1134.60344

[27] Karlin, Samuel; Mcgregor, James Coincidence probabilities, Pacific J. Math., 9 (1959), p. 1141–1164 MR 114248 | Zbl 0092.34503

[28] Katori, Makoto; Tanemura, Hideki Scaling limit of vicious walks and two-matrix model, Phys Rev E Stat Nonlin Soft Matter Phys (2002), p. 66(1 Pt 1):011105

[29] Katori, Makoto; Tanemura, Hideki Functional central limit theorems for vicious walkers, Stoch. Stoch. Rep., 75 (2003) no. 6, p. 369–390 MR 2029612 | Zbl 1206.82044

[30] König, Wolfgang; Schmid, Patrik Random walks conditioned to stay in Weyl chambers of type C and D (2009) (arXiv:0911.0631v1)

[31] Macchi, Odile The coincidence approach to stochastic point processes, Advances in Appl. Probability, 7 (1975), p. 83–122 MR 380979 | Zbl 0366.60081

[32] Mehta, Madan Lal Random matrices, Elsevier/Academic Press, Amsterdam, Pure and Applied Mathematics (Amsterdam), 142 (2004), p. xviii+688 MR 2129906 | Zbl 1107.15019

[33] Nagao, Taro; Forrester, Peter J. Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices, Physics Letters A, 247 (1998) no. 1-2, p. 42–46

[34] Nordenstam, Eric Interlaced particles in tilings and random matrices, Swedish Royal Institute of Technology (KTH) (2009) (Ph. D. Thesis)

[35] Nordenstam, Eric On the shuffling algorithm for domino tilings, Electron. J. Probab., 15 (2010), p. no. 3, 75–95 MR 2578383 | Zbl 1193.60015

[36] Okounkov, Andrei; Reshetikhin, Nicolai The birth of a random matrix, Mosc. Math. J., 6 (2006) no. 3, p. 553–566, 588 MR 2274865 | Zbl 1130.15014

[37] Spohn, Herbert Interacting Brownian particles: a study of Dyson’s model, Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986), Springer, New York (IMA Vol. Math. Appl.) 9 (1987), p. 151–179 MR 914993 | Zbl 0674.60096

[38] Tracy, Craig A.; Widom, Harold Differential equations for Dyson processes, Comm. Math. Phys., 252 (2004) no. 1-3, p. 7–41 MR 2103903 | Zbl 1124.82007

[39] Warren, Jon Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab., 12 (2007), p. no. 19, 573–590 MR 2299928 | Zbl 1127.60078