Gauss–Manin connections for p-adic families of nearly overconvergent modular forms
Annales de l'Institut Fourier, Volume 64 (2014) no. 6, p. 2449-2464

We interpolate the Gauss–Manin connection in p-adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly overconvergent modular forms of type r+1 with p-adic weight shifted by 2. Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.

Nous obtenons l’interpolation de la connexion de Gauss–Manin en familles p-adiques de formes modulaires quasi-surconvergentes. Ceci donne une famille d’opérateurs différentiels à la Maass–Shimura qui envoie l’espace de formes modulaires quasi-surconvergentes de type r dans celui de formes modulaires quasi-surconvergentes de type r+1 et de poids p-adique augmenté par 2. Notre méthode est purement géométrique, elle utlise les constructions géométriques des courbes de Hecke dues à Andreatta–Iovita–Stevens et Pilloni, et devrait donc se généraliser aux groupes de rang supérieur.

DOI : https://doi.org/10.5802/aif.2916
Classification:  11F33,  14F40
Keywords: Gauss–Manin connections, Nearly overconvergent modular forms, Eigencurves, Families of p-adic modular forms
@article{AIF_2014__64_6_2449_0,
     author = {Harron, Robert and Xiao, Liang},
     title = {Gauss--Manin connections for $p$-adic families of nearly overconvergent modular forms},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {6},
     year = {2014},
     pages = {2449-2464},
     doi = {10.5802/aif.2916},
     mrnumber = {3331170},
     zbl = {06387343},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2014__64_6_2449_0}
}
Harron, Robert; Xiao, Liang. Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms. Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2449-2464. doi : 10.5802/aif.2916. http://www.numdam.org/item/AIF_2014__64_6_2449_0/

[1] Andreatta, F.; Iovita, A.; Pilloni, V. On overconvergent modular sheaves and modular forms for GL 2/F (preprint, to appear in Israel J. Math., doi:10.1007/s11856-014-1045-8)

[2] Andreatta, F.; Iovita, A.; Stevens, G. p-adic families of Siegel modular cuspforms (to appear in Ann. of Math.) | Zbl 06399445

[3] Buzzard, K. Eigenvarieties, L-functions and Galois representations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 320 (2007), pp. 59-120 | MR 2367390 | Zbl 1230.11054

[4] Coleman, R.; Gouvêa, F.; Jochnowitz, N. E 2 , Θ, and overconvergence, Int. Math. Res. Not. (1995) no. 1, pp. 23-41 | Article | MR 1317641 | Zbl 0846.11027

[5] Darmon, H.; Rotger, V. Diagonal cycles and Euler systems I: A p-adic Gross–Zagier formula (to appear in Ann. Sci. Éc. Norm. Supér. (4)) | Zbl 1356.11039

[6] Fargues, L. La filtration de Harder–Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Tome 645 (2010), pp. 1-39 | Article | MR 2673421 | Zbl 1199.14015

[7] Katz, N. p-adic properties of modular schemes and modular forms, Modular functions of one variable, III, Springer, Berlin (Lecture Notes in Mathematics) Tome 350 (1973), pp. 69-190 | MR 447119 | Zbl 0271.10033

[8] Pilloni, V. Overconvergent modular forms, Ann. Inst. Fourier, Tome 63 (2013) no. 1, pp. 219-239 | Article | Numdam | MR 3097946 | Zbl 1316.11034

[9] Urban, E. Nearly overconvergent modular forms (to appear in the Proceedings of conference IWASAWA 2012 held at Heidelberg, available at http://www.math.columbia.edu/~urban/EURP.html) | Zbl 1328.11052

[10] Urban, Eric On the rank of Selmer groups for elliptic curves over , Automorphic representations and L-functions, Tata Inst. Fund. Res., Mumbai (Tata Inst. Fundam. Res. Stud. Math.) Tome 22 (2013), pp. 651-680 | MR 3156865