Quelques résultats effectifs concernant les invariants de Tsfasman-Vlăduţ
Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 63-99.

On considère dans cet article les propriétés asymptotiques de corps globaux à travers l’étude de leurs invariants de Tsfasman-Vlăduţ, nombres qui décrivent en particulier la décomposition des places dans les tours de corps globaux. On utilise des résultats récents d’Alexander Schmidt et une version faible mais effective du théorème de Grunwald-Wang pour construire des corps globaux infinis ayant un ensemble fini donné d’invariants non nuls et un ensemble prescrit d’invariants nuls, tout en estimant leur défaut.

We consider in this article properties of infinite algebraic extensions of global fields through their Tsfasman-Vladuts invariants, which describe in particular the decomposition of primes in global field towers. We use recent results of A. Schmidt and a weak effective version of the Grunwald-Wang theorem to construct infinite global fields having at the same time a given finite set of positive invariants, a prescribed set of invariants being zero, and a controlled deficiency.

DOI : https://doi.org/10.5802/aif.2925
Classification : 11R29,  11R34,  11R37,  11R45,  11R58
Mots clés : Corps globaux infinis, mild pro-p-groupes, ramification restreinte, théorie du corps de classes
@article{AIF_2015__65_1_63_0,
     author = {Lebacque, Philippe},
     title = {Quelques r\'esultats effectifs concernant les invariants de Tsfasman-Vl\u adu\c t},
     journal = {Annales de l'Institut Fourier},
     pages = {63--99},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.5802/aif.2925},
     zbl = {1326.11071},
     language = {fr},
     url = {archive.numdam.org/item/AIF_2015__65_1_63_0/}
}
Lebacque, Philippe. Quelques résultats effectifs concernant les invariants de Tsfasman-Vlăduţ. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 63-99. doi : 10.5802/aif.2925. http://archive.numdam.org/item/AIF_2015__65_1_63_0/

[1] Bach, Eric; Sorenson, Jonathan Explicit bounds for primes in residue classes, Math. Comp., Volume 65 (1996) no. 216, pp. 1717-1735 | Article | MR 1355006 | Zbl 0853.11077

[2] Garcia, Arnaldo; Stichtenoth, Henning Asymptotically good towers of function fields over finite fields, C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996) no. 11, pp. 1067-1070 | MR 1396642 | Zbl 0867.11042

[3] Gras, Georges Class field theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, pp. xiv+491 (From theory to practice, Translated from the French manuscript by Henri Cohen) | Article | MR 1941965 | Zbl 1019.11032

[4] Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York, 1979, pp. xvi+426 | MR 568909 | Zbl 0058.03301

[5] Ihara, Yasutaka Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981) no. 3, p. 721-724 (1982) | MR 656048 | Zbl 0509.14019

[6] Ihara, Yasutaka How many primes decompose completely in an infinite unramified Galois extension of a global field ?, J. Math. Soc. Japan, Volume 35 (1983) no. 4, pp. 693-709 | Article | MR 714470 | Zbl 0518.12006

[7] Kumar Murty, Vijaya; Scherk, John Effective versions of the Chebotarev density theorem for function fields, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 6, pp. 523-528 | MR 1298275 | Zbl 0822.11077

[8] Labute, John Mild pro-p-groups and Galois groups of p-extensions of , J. Reine Angew. Math., Volume 596 (2006), pp. 155-182 | Article | MR 2254811 | Zbl 1122.11076

[9] Lagarias, J. C.; Montgomery, H. L.; Odlyzko, A. M. A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979) no. 3, pp. 271-296 | Article | MR 553223 | Zbl 0401.12014

[10] Lagarias, J. C.; Odlyzko, A. M. Effective versions of the Chebotarev density theorem, Algebraic number fields : L -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409-464 | MR 447191 | Zbl 0362.12011

[11] Lebacque, P. Sur quelques Propriétés asymptotiques des corps globaux (2007) (Masters thesis)

[12] Lebacque, Philippe On Tsfasman-Vlăduţ invariants of infinite global fields, Int. J. Number Theory, Volume 6 (2010) no. 6, pp. 1419-1448 | Article | MR 2726590 | Zbl 1225.11146

[13] Louboutin, Stéphane Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s=1, and explicit lower bounds for relative class numbers of CM-fields, Canad. J. Math., Volume 53 (2001) no. 6, pp. 1194-1222 | Article | MR 1863848 | Zbl 0998.11066

[14] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 323, Springer-Verlag, Berlin, 2008, pp. xvi+825 | Article | MR 2392026 | Zbl 1136.11001

[15] Niederreiter, Harald; Xing, Chaoping Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound, Math. Nachr., Volume 195 (1998), pp. 171-186 | Article | MR 1654693 | Zbl 0920.11039

[16] Rosen, Michael Number theory in function fields, Graduate Texts in Mathematics, Volume 210, Springer-Verlag, New York, 2002, pp. xii+358 | Article | MR 1876657 | Zbl 0830.11044

[17] Šafarevič, I. R. Extensions with prescribed ramification points, Inst. Hautes Études Sci. Publ. Math. (1963) no. 18, pp. 71-95 | MR 176979 | Zbl 0118.27505

[18] Schmidt, Alexander Über pro-p-fundamentalgruppen markierter arithmetischer kurven, J. Reine Angew. Math., Volume 640 (2010), pp. 203-235 | Article | MR 2629694 | Zbl 1193.14041

[19] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981) no. 54, pp. 323-401 | EuDML 103977 | Numdam | MR 644559 | Zbl 0496.12011

[20] Serre, Jean-Pierre Rational Points on Curves over Finite Fields (1985) (Harvard University)

[21] Silverman, Joseph H. An inequality relating the regulator and the discriminant of a number field, J. Number Theory, Volume 19 (1984) no. 3, pp. 437-442 | Article | MR 769793 | Zbl 0552.12003

[22] Stichtenoth, Henning Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993, pp. x+260 | MR 1251961 | Zbl 0816.14011

[23] Tsfasman, M. A.; Vlăduţ, S. G. Algebraic-geometric codes, Mathematics and its Applications (Soviet Series), Volume 58, Kluwer Academic Publishers Group, Dordrecht, 1991, pp. xxiv+667 (Translated from the Russian by the authors) | Article | MR 1186841 | Zbl 0727.94007

[24] Tsfasman, M. A.; Vlăduţ, S. G. Infinite global fields and the generalized Brauer-Siegel theorem, Mosc. Math. J., Volume 2 (2002) no. 2, pp. 329-402 (Dedicated to Yuri I. Manin on the occasion of his 65th birthday) | MR 1944510 | Zbl 1004.11037

[25] Tsfasman, Michael; Vlăduţ, Serge; Nogin, Dmitry Algebraic geometric codes : basic notions, Mathematical Surveys and Monographs, Volume 139, American Mathematical Society, Providence, RI, 2007, pp. xx+338 | Article | MR 2339649 | Zbl 1127.94001

[26] Vlèduts, S. G.; Drinfelʼd, V. G. The number of points of an algebraic curve, Funktsional. Anal. i Prilozhen., Volume 17 (1983) no. 1, p. 68-69 | Zbl 0522.14011

[27] Zimmert, Rainer Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math., Volume 62 (1981) no. 3, pp. 367-380 | Article | EuDML 142778 | MR 604833 | Zbl 0456.12003