Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations
Annales de l'Institut Fourier, Volume 66 (2016) no. 4, p. 1451-1528

The method of Klainerman vector fields plays an essential role in the study of global existence of solutions of nonlinear hyperbolic PDEs, with small, smooth, decaying Cauchy data. Nevertheless, it turns out that some equations of physics, like the one dimensional water waves equation with finite depth, do not possess any Klainerman vector field. The goal of this paper is to design, on a model equation, a substitute to the Klainerman vector fields method, that allows one to get global existence results, even in the critical case for which linear scattering does not hold at infinity. The main idea is to use semiclassical pseudodifferential operators instead of vector fields, combined with microlocal normal forms, to reduce the nonlinearity to expressions for which a Leibniz rule holds for these operators.

La méthode des champs de Klainerman joue un rôle essentiel dans l’étude de l’existence globale de solutions d’équations aux dérivées partielles hyperboliques non-linéaires à données petites, régulières, décroissantes à l’infini. Toutefois, certaines équations issues de la physique, comme l’équation des ondes de gravité en profondeur finie, ne possèdent pas de champ de Klainerman. Le but de cet article est de développer, sur une équation modèle, un substitut à la méthode des champs de Klainerman, qui permette d’obtenir des résultats d’existence globale, même dans le cas critique pour lequel il n’y a pas diffusion linéaire à l’infini. L’idée essentielle est d’utiliser des opérateurs pseudo-différentiels semi-classiques au lieu de champs de vecteurs, combinés avec une méthode de formes locales microlocale, afin de réduire la non-linéarité à des expressions pour lesquelles une règle de Leibniz est valable pour de tels opérateurs.

Received : 2014-02-17
Accepted : 2015-11-13
Published online : 2016-07-28
DOI : https://doi.org/10.5802/aif.3041
Classification:  35L71,  35A01,  35B40
Keywords: Global solution of Klein-Gordon equations, Klainerman vector fields, Microlocal normal forms, Semiclassical analysis
@article{AIF_2016__66_4_1451_0,
     author = {Delort, Jean-Marc},
     title = {Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     pages = {1451-1528},
     doi = {10.5802/aif.3041},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2016__66_4_1451_0}
}
Delort, Jean-Marc. Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1451-1528. doi : 10.5802/aif.3041. http://www.numdam.org/item/AIF_2016__66_4_1451_0/

[1] Alazard, Thomas; Delort, Jean-Marc Global solutions and asymptotic behavior for two dimensional gravity water waves (2016) (to appear in Ann. Sci. École Norm. Sup)

[2] Alazard, Thomas; Delort, Jean-Marc Sobolev estimates for two dimensional gravity water waves (2016) (to appear in Astérique)

[3] Delort, Jean-Marc Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4), Tome 34 (2001) no. 1, pp. 1-61 | Article

[4] Delort, Jean-Marc Erratum: “Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1” [Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61;], Ann. Sci. École Norm. Sup. (4), Tome 39 (2006) no. 2, pp. 335-345 | Article

[5] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 268 (1999), xii+227 pages | Article

[6] Germain, Pierre Space-time resonances, Journées Équations aux dérivées partielles 2010 (Exp. No. 8)

[7] Germain, Pierre Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Tome 61 (2012) no. 6, pp. 2463-2506 | Article

[8] Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN (2009) no. 3, pp. 414-432 | Article

[9] Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. (9), Tome 97 (2012) no. 5, pp. 505-543 | Article

[10] Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2), Tome 175 (2012) no. 2, pp. 691-754 | Article

[11] Gustafson, Stephen; Nakanishi, Kenji; Tsai, Tai-Peng Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., Tome 11 (2009) no. 4, pp. 657-707 | Article

[12] Hayashi, Nakao; Naumkin, Pavel On the modified Korteweg-de Vries equation, Math. Phys. Anal. Geom., Tome 4 (2001) no. 3, pp. 197-227 | Article

[13] Hayashi, Nakao; Naumkin, Pavel Quadratic nonlinear Klein-Gordon equation in one dimension, J. Math. Phys., Tome 53 (2012) no. 10 (103711, 36) | Article

[14] Hunter, John; Ifrim, Mihaela; Tataru, Daniel Two dimensional water waves in holomorphic coordinates (2014) (http://arxiv.org/abs/1401.1252 )

[15] Ionescu, Alexandru D.; Pausader, Benoit Global solutions of quasilinear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc. (JEMS), Tome 16 (2014) no. 11, pp. 2355-2431 | Article

[16] Ionescu, Alexandru D.; Pusateri, Fabio Global solutions for the gravity water waves system in 2d, Invent. Math., Tome 199 (2015) no. 3, pp. 653-804 | Article

[17] Keel, Markus; Tao, Terence Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., Tome 121 (1999) no. 3, pp. 629-669 http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.3keel.pdf

[18] Klainerman, Sergiu Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., Tome 38 (1985) no. 5, pp. 631-641 | Article

[19] Lannes, David The water waves problem, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 188 (2013), xx+321 pages (Mathematical analysis and asymptotics)

[20] Lindblad, Hans; Soffer, Avy A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., Tome 73 (2005) no. 3, pp. 249-258 | Article

[21] Lindblad, Hans; Soffer, Avy Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Trans. Amer. Math. Soc., Tome 367 (2015) no. 12, pp. 8861-8909 | Article

[22] Moriyama, Kazunori Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Tome 10 (1997) no. 3, pp. 499-520

[23] Moriyama, Kazunori; Tonegawa, Satoshi; Tsutsumi, Yoshio Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., Tome 40 (1997) no. 2, pp. 313-333 http://www.math.kobe-u.ac.jp/~fe/xml/mr1480281.xml

[24] Ozawa, Tohru; Tsutaya, Kimitoshi; Tsutsumi, Yoshio Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., Tome 222 (1996) no. 3, pp. 341-362 | Article

[25] Shatah, Jalal Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Tome 38 (1985) no. 5, pp. 685-696 | Article

[26] Simon, Jacques C. H.; Taflin, Erik The Cauchy problem for nonlinear Klein-Gordon equations, Comm. Math. Phys., Tome 152 (1993) no. 3, pp. 433-478 http://projecteuclid.org/getRecord?id=euclid.cmp/1104252514

[27] Sterbenz, Jacob Dispersive decay for the 1D Klein-Gordon equation with variable coefficient nonlinearities (2013) (http://arxiv.org/abs/1307.4808 )

[28] Sunagawa, Hideaki On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, Tome 192 (2003) no. 2, pp. 308-325 | Article

[29] Sunagawa, Hideaki Large time asymptotics of solutions to nonlinear Klein-Gordon systems, Osaka J. Math., Tome 42 (2005) no. 1, pp. 65-83 http://projecteuclid.org/getRecord?id=euclid.ojm/1153494315

[30] Sunagawa, Hideaki Remarks on the asymptotic behavior of the cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Tome 18 (2005) no. 5, pp. 481-494

[31] Sunagawa, Hideaki Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, Tome 58 (2006) no. 2, pp. 379-400 http://projecteuclid.org/getRecord?id=euclid.jmsj/1149166781

[32] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Tome 130 (1997) no. 1, pp. 39-72 | Article

[33] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Tome 12 (1999) no. 2, pp. 445-495 | Article

[34] Wu, Sijue Almost global wellposedness of the 2-D full water wave problem, Invent. Math., Tome 177 (2009) no. 1, pp. 45-135 | Article

[35] Wu, Sijue Global wellposedness of the 3-D full water wave problem, Invent. Math., Tome 184 (2011) no. 1, pp. 125-220 | Article

[36] Yordanov, Borislav Blow-up for the one dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (Preprint)

[37] Zworski, Maciej Semiclassical analysis, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 138 (2012), xii+431 pages