Complexity as a homeomorphism invariant for tiling spaces
Annales de l'Institut Fourier, Volume 67 (2017) no. 2, p. 539-577

It is proved that whenever two aperiodic repetitive tilings with finite local complexity have homeomorphic tiling spaces, their associated complexity functions are asymptotically equivalent in a certain sense (which implies, if the complexity is polynomial, that the exponent of the leading term is preserved by homeomorphism). This theorem can be reworded in terms of d-dimensional infinite words: if two d -subshifts (with the same conditions as above) are flow equivalent, their complexity functions are equivalent up to rescaling. An analogous theorem is stated for the repetitivity function, which is a quantitative measure of the recurrence of orbits in the tiling space. Behind this result is the fact that any homeomorphism between tiling spaces is described by a so-called “shape deformation”. In the last section, we use this observation to show that a certain cohomology group is an invariant of homeomorphisms between tiling spaces up to topological conjugacy.

Il est prouvé dans cet article que deux pavages apériodiques et répétitifs dont les espaces de pavages sont homéomorphes ont des fonctions de complexité asymptotiquement équivalentes en un certain sens. Cela implique que lorsque les fonctions de complexité croissent polynomialement, l’exposant du terme dominant est préservé par homéomorphisme. Ce théorème peut s’énoncer en termes de mots infinis d-dimensionels : si deux sous-décalages indexés par d (avec les mêmes conditions) sont « flot-équivalents » (c’est-à-dire que leurs suspensions sont homéomorphes), alors leurs fonctions de complexité sont équivalentes à changement d’échelle près. Un théorème analogue peut être énoncé pour la fonction de répétitivité, qui donne une mesure quantitative de la vitesse de récurrence des orbites dans l’espace de pavages. De manière sous-jacente, se trouve le fait que tout homéomorphisme entre espaces de pavages est induit par une déformation des tuiles. Dans la dernière section, on utilise cette observation pour montrer qu’un certain groupe de cohomologie fournit un invariant des homéomorphismes entre espaces de pavages à conjugation près.

Received : 2015-07-23
Revised : 2016-06-14
Accepted : 2016-07-12
Published online : 2017-05-31
DOI : https://doi.org/10.5802/aif.3091
Classification:  37B50,  37B10
Keywords: aperiodic tilings, complexity, repetitivity, flow-equivalence, orbit-equivalence
@article{AIF_2017__67_2_539_0,
     author = {Julien, Antoine},
     title = {Complexity as a homeomorphism invariant for tiling spaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     pages = {539-577},
     doi = {10.5802/aif.3091},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2017__67_2_539_0}
}
Julien, Antoine. Complexity as a homeomorphism invariant for tiling spaces. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 539-577. doi : 10.5802/aif.3091. http://www.numdam.org/item/AIF_2017__67_2_539_0/

[1] Baake, Michael; Lenz, Daniel; Richard, Christoph Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies, Lett. Math. Phys., Tome 82 (2007) no. 1, pp. 61-77 | Article

[2] Baake, Michael; Schlottmann, Martin; Jarvis, Peter D. Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A, Tome 24 (1991) no. 19, pp. 4637-4654 http://stacks.iop.org/0305-4470/24/4637 | Article

[3] Bellissard, Jean; Benedetti, Riccardo; Gambaudo, Jean-Marc Spaces of tilings, finite telescopic approximations and gap-labeling, Comm. Math. Phys., Tome 261 (2006) no. 1, pp. 1-41 | Article

[4] Bellissard, Jean; Herrmann, D. J. L.; Zarrouati, M. Hulls of aperiodic solids and gap labeling theorems, Directions in mathematical quasicrystals, Amer. Math. Soc., Providence, RI (CRM Monogr. Ser.) Tome 13 (2000), pp. 207-258

[5] Benedetti, Riccardo; Gambaudo, Jean-Marc On the dynamics of 𝔾-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems, Tome 23 (2003) no. 3, pp. 673-691 | Article

[6] Boulmezaoud, Housem; Kellendonk, Johannes Comparing different versions of tiling cohomology, Topology Appl., Tome 157 (2010) no. 14, pp. 2225-2239 | Article

[7] Clark, Alex; Sadun, Lorenzo When shape matters: deformations of tiling spaces, Ergodic Theory Dynam. Systems, Tome 26 (2006) no. 1, pp. 69-86 | Article

[8] Frank, Natalie; Sadun, Lorenzo Fusion tilings with infinite local complexity, Topology Proc., Tome 43 (2014), pp. 235-276

[9] Julien, Antoine Complexité des pavages apériodiques : calculs et interprétations, Université Lyon 1 (2009) (Ph. D. Thesis)

[10] Julien, Antoine Complexity and cohomology for cut-and-projection tilings, Ergodic Theory Dynam. Systems, Tome 30 (2010) no. 2, pp. 489-523 | Article

[11] Julien, Antoine; Sadun, Lorenzo Tiling deformations, cohomology, and orbit equivalence of tiling spaces (2015) (http://arxiv.org/abs/1506.02694 )

[12] Julien, Antoine; Savinien, Jean Transverse Laplacians for substitution tilings, Comm. Math. Phys., Tome 301 (2011) no. 2, pp. 285-318 | Article

[13] Kellendonk, Johannes Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys., Tome 7 (1995) no. 7, pp. 1133-1180 | Article

[14] Kellendonk, Johannes Pattern-equivariant functions and cohomology, J. Phys. A, Tome 36 (2003) no. 21, pp. 5765-5772 | Article

[15] Kellendonk, Johannes Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, Tome 28 (2008) no. 4, pp. 1153-1176 | Article

[16] Kellendonk, Johannes; Putnam, Ian F. The Ruelle-Sullivan map for actions of n , Math. Ann., Tome 334 (2006) no. 3, pp. 693-711 | Article

[17] Kellendonk, Johannes; Sadun, Lorenzo Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. Lond. Math. Soc., Tome 89 (2014) no. 1, pp. 114-130 | Article

[18] Lagarias, Jeffrey C.; Pleasants, Peter A. B. Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, Tome 23 (2003) no. 3, pp. 831-867 | Article

[19] Lenz, Daniel Aperiodic Linearly Repetitive Delone Sets Are Densely Repetitive, Discrete Comput Geom, Tome 31 (2004) no. 2, pp. 323-326 http://link.springer.com/article/10.1007/s00454-003-2903-z | Article

[20] Morse, Marston; Hedlund, Gustav A. Symbolic Dynamics, Amer. J. Math., Tome 60 (1938) no. 4, pp. 815-866 | Article

[21] Muhly, Paul S.; Renault, Jean N.; Williams, Dana P. Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory, Tome 17 (1987) no. 1, pp. 3-22

[22] Rand, Betseygail; Sadun, Lorenzo An approximation theorem for maps between tiling spaces, Discrete Contin. Dyn. Syst., Tome 29 (2011) no. 1, pp. 323-326 | Article

[23] Renault, Jean A groupoid approach to C * -algebras, Springer, Berlin, Lecture Notes in Mathematics, Tome 793 (1980), ii+160 pages

[24] Sadun, Lorenzo; Williams, R. F. Tiling spaces are Cantor set fiber bundles, Ergodic Theory Dynam. Systems, Tome 23 (2003) no. 1, pp. 307-316 | Article

[25] Schlottmann, Martin Periodic and quasi-periodic Laguerre tilings, Internat. J. Modern Phys. B, Tome 7 (1993) no. 6-7, pp. 1351-1363 | Article