Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties
Annales de l'Institut Fourier, Volume 67 (2017) no. 2, p. 843-862

We study locally conformally Berwald metrics on closed manifolds which are not globally conformally Berwald. We prove that the characterization of such metrics is equivalent to characterizing incomplete, simply-connected, Riemannian manifolds with reducible holonomy group whose quotient by a group of homotheties is closed. We further prove a de Rham type splitting theorem which states that if such a manifold is analytic, it is isometric to the Riemannian product of a Euclidean space and an incomplete manifold.

Nous étudions des métriques qui sont localement, mais pas globalement conformément Berwaldiennes. Nous démontrons que la caractérisation de telles métriques est équivalente à la caractérisation des variétés Riemanniennes incomplètes et simplement connexes qui ont un groupe d’holonomie réductible tel que le quotient par un groupe d’homothéthies est fermé. De plus, nous démontrons un théorème de décomposition du type de Rham disant que si une telle variété est analytique, elle est isométrique à un produit Riemannien d’un espace Euclidien et d’une variété incomplète.

Received : 2015-07-04
Revised : 2016-07-18
Accepted : 2016-09-15
Published online : 2017-05-31
DOI : https://doi.org/10.5802/aif.3097
Classification:  53C60,  53C22,  53B40,  53C29
Keywords: Finsler manifold, Berwald manifold, homothety group, reducible holonomy
@article{AIF_2017__67_2_843_0,
     author = {Matveev, Vladimir S. and Nikolayevsky, Yuri},
     title = {Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     pages = {843-862},
     doi = {10.5802/aif.3097},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2017__67_2_843_0}
}
Matveev, Vladimir S.; Nikolayevsky, Yuri. Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 843-862. doi : 10.5802/aif.3097. http://www.numdam.org/item/AIF_2017__67_2_843_0/

[1] Belgun, Florin; Moroianu, Andrei On the irreducibility of locally metric connections, J. Reine Angew. Math., Tome 714 (2016), pp. 123-150 | Article

[2] Berger, Marcel Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, Tome 83 (1955), pp. 279-330 | Article

[3] Centore, Paul Volume forms in Finsler spaces, Houston J. Math., Tome 25 (1999) no. 4, pp. 625-640

[4] Fried, David Closed similarity manifolds, Comment. Math. Helv., Tome 55 (1980) no. 4, pp. 576-582 | Article

[5] Kourganoff, Mickaël Similarity structures and de Rham decomposition (2016) (http://arxiv.org/abs/1507.05573v2 )

[6] Matveev, Vladimir S.; Nikolayevsky, Yuri A counterexample to Belgun-Moroianu conjecture, C. R. Math. Acad. Sci. Paris, Tome 353 (2015) no. 5, pp. 455-457 | Article

[7] Matveev, Vladimir S.; Troyanov, Marc The Binet-Legendre metric in Finsler geometry, Geom. Topol., Tome 16 (2012) no. 4, pp. 2135-2170 | Article

[8] Planche, Pierre Géométrie de Finsler sur les espaces symétriques, Université de Genève, Switzerland (1995) (Ph. D. Thesis)

[9] Planche, Pierre Structures de Finsler invariantes sur les espaces symétriques, C. R. Acad. Sci. Paris Sér. I Math., Tome 321 (1995) no. 11, pp. 1455-1458

[10] Ponge, Ralf; Reckziegel, Helmut Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, Tome 48 (1993) no. 1, pp. 15-25 | Article

[11] Simons, James On the transitivity of holonomy systems, Ann. Math., Tome 76 (1962), pp. 213-234 | Article

[12] Szabó, Zoltán I. Positive definite Berwald spaces. Structure theorems on Berwald spaces, Tensor, Tome 35 (1981) no. 1, pp. 25-39

[13] Vincze, Csaba A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyházi., Tome 21 (2005) no. 2, p. 199-204 (electronic)

[14] Vincze, Csaba On a scale function for testing the conformality of a Finsler manifold to a Berwald manifold, J. Geom. Phys., Tome 54 (2005) no. 4, pp. 454-475 | Article

[15] Vincze, Csaba On geometric vector fields of Minkowski spaces and their applications, Differential Geom. Appl., Tome 24 (2006) no. 1, pp. 1-20 | Article