Gaps in sumsets of s pseudo s-th powers
Annales de l'Institut Fourier, Volume 67 (2017) no. 4, p. 1725-1738

We study the length of the gaps between consecutive members in the sumset sA when A is a pseudo s-th power sequence, with s2. We show that, almost surely, limsup(b n+1 -b n )/logb n =s s s!/Γ s (1/s), where b n are the elements of sA.

On étudie la taille des différences entre les termes consécutifs de la suite sAA est une suite de pseudo-puissances s-ièmes avec s2. On montre qu’on a presque sûrement limsup(b n+1 -b n )/logb n =s s s!/Γ s (1/s), où les b n sont les éléments de la suite sA.

Received : 2016-02-21
Revised : 2016-07-07
Accepted : 2016-09-15
Published online : 2017-09-26
DOI : https://doi.org/10.5802/aif.3120
Classification:  11B83
Keywords: Additive Number Theory, Pseudo s-th powers, Probabilistic method
@article{AIF_2017__67_4_1725_0,
     author = {Cilleruelo, Javier and Deshouillers, Jean-Marc},
     title = {Gaps in sumsets of $s$ pseudo $s$-th powers},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {4},
     year = {2017},
     pages = {1725-1738},
     doi = {10.5802/aif.3120},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2017__67_4_1725_0}
}
Cilleruelo, Javier; Deshouillers, Jean-Marc. Gaps in sumsets of $s$ pseudo $s$-th powers. Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1725-1738. doi : 10.5802/aif.3120. http://www.numdam.org/item/AIF_2017__67_4_1725_0/

[1] Boppona, Ravi; Spencer, Joel A useful elementary correlation inequality, J. Comb. Theory, Tome 50 (1989) no. 2, pp. 305-307 | Article

[2] Erdős, Pál; Rényi, Alfréd On Cantor’s series with convergent 1/q n , Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Tome 2 (1959), pp. 93-109

[3] Erdős, Pál; Rényi, Alfréd Additive properties of random sequences of positive integers, Acta Arith., Tome 6 (1960), pp. 83-110 | Article

[4] Goguel, Johann Heinrich Über Summen von zufälligen Folgen natürlischer Zahlen, J. Reine Angew. Math., Tome 278/279 (1975), pp. 63-77

[5] Landreau, Bernard Étude probabiliste des sommes des puissances s-ièmes, Compositio Mathematica, Tome 99 (1995) no. 1, pp. 1-31