q-Analogues of Laplace and Borel transforms by means of q-exponentials  [ q-Analogues des transformées de Laplace et Borel au moyen de q-exponentielles ]
Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 1865-1903.

Nous considérons certaines q-analogues des transformées de Laplace et Borel et montrons une nouvelle formule d’inversion entre les transformées de q-Laplace et de q-Borel. Des q-analogues des lemmes de type Watson et des opérateurs de convolution sont aussi discutés. Ces résultats donnent un nouveau cadre pour la sommabilité des séries formelles qui sont solutions d’équations aux q-différences.

The article discusses certain q-analogues of Laplace and Borel transforms, and shows a new inversion formula between q-Laplace and q-Borel transforms. q-Analogues of Watson type lemma and convolution operators are also discussed. These results give a new framework of the summability of formal power series solutions of q-difference equations.

Reçu le : 2015-01-22
Révisé le : 2016-12-04
Accepté le : 2016-12-07
Publié le : 2017-11-16
DOI : https://doi.org/10.5802/aif.3124
Classification : 44A10,  39A13,  40G10
Mots clés : q-analogue, transformation de q-Laplace, transformation de q-Borel, équation aux q-différence
@article{AIF_2017__67_5_1865_0,
     author = {Tahara, Hidetoshi},
     title = {$q$-Analogues of Laplace and Borel transforms by means of $q$-exponentials},
     journal = {Annales de l'Institut Fourier},
     pages = {1865--1903},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3124},
     language = {en},
     url = {archive.numdam.org/item/AIF_2017__67_5_1865_0/}
}
Tahara, Hidetoshi. $q$-Analogues of Laplace and Borel transforms by means of $q$-exponentials. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 1865-1903. doi : 10.5802/aif.3124. http://archive.numdam.org/item/AIF_2017__67_5_1865_0/

[1] Abdi, Wazir Hasan On q-Laplace transforms, Proc. Natl. Acad. Sci. India, Sect. A, Volume 29 (1960), pp. 389-408 | Zbl 0168.38303

[2] Abdi, Wazir Hasan On certain q-difference equations and q-Laplace transform, Proc. Natl. Acad. Sci. India, Sect. A, Volume 28 (1962), pp. 1-15 | Zbl 0105.30601

[3] Di Vizio, Lucia; Zhang, Changgui On q-summation and confluence, Ann. Inst. Fourier, Volume 59 (2009) no. 1, pp. 347-392 | Article | Zbl 1175.34111

[4] Dreyfus, Thomas Building meromorphic solutions of q-difference equations using a Borel-Laplace summation, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6562-6587 | Article | Zbl 1357.39007

[5] Gasper, George; Rahman, Mizan Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, Volume 96, Cambridge University Press, 2004, xxvi+428 pages | Zbl 1129.33005

[6] Hahn, Wolfgang Beitrage zur Theorie der Heineschen Reihen, Math. Nachr., Volume 2 (1949), pp. 340-379 | Article | Zbl 0033.05703

[7] Jackson, Frederick H. On q-definite integrals, Quart. J., Volume 41 (1910), pp. 193-203 | Zbl 41.0317.04

[8] Kac, Victor; Cheung, Pokman Quantum calculus, Universitext, Springer, 2002, ix+112 pages | Zbl 0986.05001

[9] Lastra, Alberto; Malek, Stéphane On q-Gevrey asymptotics for singularly perturbed q-difference-differential problems with an irregular singularity, Abstr. Appl. Anal., Volume 2012 (2012) (Art. ID 860716, 35 p.) | Article | Zbl 1239.34104

[10] Lastra, Alberto; Malek, Stéphane; Sanz, Javier On q-asymptotics for linear q-difference-differential equations with Fuchsian and irregular singularities, J. Differ. Equations, Volume 252 (2012) no. 10, pp. 5185-5216 | Article | Zbl 1251.35016

[11] Malek, Stéphane On singularly perturbed q-difference-differential equations with irregular singularity, J. Dyn. Control Syst., Volume 17 (2011) no. 2, pp. 243-271 | Article | Zbl 1219.35020

[12] Marotte, Fabienne; Zhang, Changgui Multisommabilité des séries entières solutions formelles d’une équation aux q-différences linéaire analytique, Ann. Inst. Fourier, Volume 50 (2000) no. 6, pp. 1859-1890 | Article | Zbl 1063.39001

[13] Olde Daalhuis, Adri B. Asymptotic expansions for q-gamma, q-exponential, and q-Bessel functions, J. Math. Anal. Appl., Volume 186 (1994) no. 3, pp. 896-913 | Article | Zbl 0809.33008

[14] Olver, Frank William John Asymptotics and special functions, Academic Press, 1974, xii+297 pages | Zbl 0308.41023

[15] Ramis, Jean-Pierre About the growth of the entire functions solutions of linear algebraic q-difference equations, Ann. Fac. Sci. Toulouse, Volume 1 (1992) no. 1, pp. 53-94 | Article | Zbl 0792.39005

[16] Ramis, Jean-Pierre Séries divergentes et théories asymptotiques, Panoramas et Synthèses, Volume 121, Société Mathématique de France, 1993, 74 pages | Zbl 0830.34045

[17] Ramis, Jean-Pierre; Zhang, Changgui Développement asymptotique q-Gevrey et fonction thêta de Jacobi, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 11, pp. 899-902 | Article | Zbl 1025.39014

[18] Tahara, Hidetoshi; Yamazawa, Hiroshi q-Analogue of summability of formal solutions of some linear q-difference-differential equations, Opusc. Math., Volume 35 (2015) no. 5, pp. 713-738 | Article | Zbl 1329.35104

[19] Zhang, Changgui Développements asymptotiques q-Gevrey et séries Gq-sommables, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 227-261 | Article | Zbl 0974.39009

[20] Zhang, Changgui Transformations de q-Borel-Laplace au moyen de la fonction thêta de Jacobi, C. R. Acad. Sci. Paris, Volume 331 (2000), pp. 31-34 | Article | Zbl 1101.33307

[21] Zhang, Changgui Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples, Differential equations and the Stokes phenomenon, Groningen (2001) (2002), pp. 309-329 | Zbl 1041.39013