On the expansions of real numbers in two integer bases  [ Sur le développement des nombres réels en deux bases entières ]
Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2225-2235.

Soient r et s deux entiers strictement positifs multiplicativement indépendants. Nous démontrons que les développements en base r et en base s d’un nombre irrationnel, vus comme des mots infinis sur les alphabets {0,1,...,r-1} et {0,1,...,s-1}, respectivement, ne peuvent pas avoir simultanément une trop faible complexité par blocs. En particulier, au plus l’un d’eux est un mot sturmien.

Let r and s be multiplicatively independent positive integers. We establish that the r-ary expansion and the s-ary expansion of an irrational real number, viewed as infinite words on {0,1,...,r-1} and {0,1,...,s-1}, respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words.

Reçu le : 2016-01-03
Révisé le : 2016-09-22
Accepté le : 2016-12-07
Publié le : 2017-11-16
DOI : https://doi.org/10.5802/aif.3134
Classification : 11A63,  68R15
Mots clés : Combinatoire des mots, mot sturmien, développement en base entière, fraction continue
@article{AIF_2017__67_5_2225_0,
     author = {Bugeaud, Yann and Kim, Dong Han},
     title = {On the expansions of real numbers in two integer bases},
     journal = {Annales de l'Institut Fourier},
     pages = {2225--2235},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3134},
     language = {en},
     url = {archive.numdam.org/item/AIF_2017__67_5_2225_0/}
}
Bugeaud, Yann; Kim, Dong Han. On the expansions of real numbers in two integer bases. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2225-2235. doi : 10.5802/aif.3134. http://archive.numdam.org/item/AIF_2017__67_5_2225_0/

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic Sequences. Theory, Applications, Generalizations., Cambridge University Press, 2003, xvi+571 pages | Zbl 1086.11015

[2] Bugeaud, Yann Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, Volume 160, Cambridge University Press, 2004, xv+274 pages | Zbl 1055.11002

[3] Bugeaud, Yann Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, Volume 193, Cambridge University Press, 2012, xvi+300 pages | Zbl 1260.11001

[4] Bugeaud, Yann On the expansions of a real number to several integer bases, Rev. Mat. Iberoam., Volume 28 (2012) no. 4, pp. 931-946 | Article | Zbl 1257.11008

[5] Bugeaud, Yann; Kim, Dong Han A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers (Preprint)

[6] Bugeaud, Yann; Kim, Dong Han On the expansions of real numbers in two multiplicatively dependent bases, Bull. Aust. Math. Soc., Volume 95 (2017), pp. 373-383 | Article | Zbl 06736160

[7] Cassaigne, Julien Sequences with grouped factors, DLT’97, Developments in Language Theory III (1998), pp. 211-222

[8] Evertse, Jan-Hendrik; Schlickewei, Hans Peter; Schmidt, Wolfgang M. Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002) no. 3, pp. 807-836 | Article | Zbl 1026.11038

[9] Morse, Marston; Hedlund, Gustav A. Symbolic dynamics II: Sturmian sequences, Am. J. Math., Volume 62 (1940), pp. 1-42 | Article | Zbl 0022.34003