Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, p. 2597-2621

We present normal forms for unfoldings of nilpotent contact points of slow-fast systems in the plane. The normal forms are useful in the treatment of regular and singular contact points (including turning points). For regular contact points, we obtain a normal form of Liénard type, while for singular contact points, the normal form is of Liénard type up to exponentially small error. Our techniques are based on Gevrey estimates on formal power series and Gevrey summation. This extension of earlier results is based on a Gevrey version of Levinson’s preparation theorem.

On présente des formes normales pour les déploiements de points de contact nilpotents des systèmes lent-rapide dans le plan. Les formes normales sont utiles pour traiter des points de contact reguliers et singuliers (y compris les points tournant). Pour les points de contact reguliers, on obtient une forme normale de type Liénard, tandis que pour les points de contact singuliers, la forme normale est de type Liénard sauf une erreur exponentiellement petite. Nos techniques sont basées sur des estimations de Gevrey des séries formelles et la sommation de Gevrey. Il s’agit d’une extension des résultats connus, basée sur une version de Gevrey de la théorème de préparation de Levinson.

Received : 2015-06-25
Revised : 2017-02-13
Accepted : 2017-03-17
Published online : 2017-12-14
DOI : https://doi.org/10.5802/aif.3144
Classification:  34D14,  34A26,  34M30,  34M60
Keywords: singular perturbations, slow-fast vector field, normal forms, Gevrey asymptotics, Liénard system
@article{AIF_2017__67_6_2597_0,
     author = {De Maesschalck, Peter and Doan, Thai Son},
     title = {Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     pages = {2597-2621},
     doi = {10.5802/aif.3144},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2017__67_6_2597_0}
}
De Maesschalck, Peter; Doan, Thai Son. Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2597-2621. doi : 10.5802/aif.3144. http://www.numdam.org/item/AIF_2017__67_6_2597_0/

[1] Canalis-Durand, Mireille; Ramis, Jean-Pierre; Schäfke, Reinhard; Sibuya, Yasutaka Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math., Tome 518 (2000), pp. 95-129 | Article | MR 1739408 (2000m:34207) | Zbl 0937.34075

[2] De Maesschalck, Peter Gevrey normal forms for nilpotent contact points of order two, Discrete Contin. Dyn. Syst., Tome 34 (2014) no. 2, pp. 677-688 | Article | MR 3094600 | Zbl 1282.34060

[3] De Maesschalck, Peter; Dumortier, Freddy; Roussarie, Robert Cyclicity of common slow-fast cycles, Indag. Math., Tome 22 (2011) no. 3-4, pp. 165-206 | Article | MR 2853605 | Zbl 1233.34014

[4] Fenichel, Neil Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, Tome 31 (1979) no. 1, pp. 53-98 | Article | MR 524817 (80m:58032) | Zbl 0476.34034

[5] Fruchard, Augustin; Schäfke, Reinhard Composite asymptotic expansions, Springer, Lecture Notes in Mathematics, Tome 2066 (2013), x+161 pages | Article | MR 3013433 | Zbl 1269.34002

[6] Huzak, Renato Normal forms of Liénard type for analytic unfoldings of nilpotent singularities, Proc. Am. Math. Soc., Tome 145 (2017) no. 10, pp. 4325-4336 | Article | Zbl 06767089

[7] Jardón-Kojakhmetov, Hildeberto Formal normal form of A k slow fast systems, C. R. Acad. Sci. Paris, Ser. I, Tome 353 (2015), pp. 795-800 | Article | Zbl 1334.34086

[8] Levinson, Norman A canonical form for an analytic function of several variables at a critical point, Bull. Am. Math. Soc., Tome 66 (1960), p. 68-69 | Article | MR 0145099 (26 #2634) | Zbl 0192.18201

[9] Neĭshtadt, Anatolií I. The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh., Tome 48 (1984) no. 2, pp. 197-204 | Article | MR 802878 (86j:34043) | Zbl 0571.70022

[10] Parusiński, Adam; Rolin, Jean-Philippe A note on the Weierstrass preparation theorem in quasianalytic local rings, Can. Math. Bull., Tome 57 (2014) no. 3, pp. 614-620 | Article | MR 3239125 | Zbl 1303.14067

[11] Ramis, Jean-Pierre; Schäfke, Reinhard Gevrey separation of fast and slow variables, Nonlinearity, Tome 9 (1996) no. 2, pp. 353-384 | Article | MR 1384480 (97e:34083) | Zbl 0925.70161

[12] Roberts, Anthony J. Normal form transforms separate slow and fast modes in stochastic dynamical systems, Phys. A, Tome 387 (2008) no. 1, pp. 12-38 | Article | MR 2585314 (2011c:34141)

[13] Szmolyan, Peter; Wechselberger, Martin Canards in 3 , J. Differ. Equations, Tome 177 (2001) no. 2, pp. 419-453 | Article | MR 1876650 (2002i:34098) | Zbl 1007.34057