Bounded negativity, Harbourne constants and transversal arrangements of curves
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, p. 2719-2735

The Bounded Negativity Conjecture predicts that for every complex projective surface X there exists a number b(X) such that C 2 -b(X) holds for all reduced curves CX. For birational surfaces f:YX there have been introduced certain invariants (Harbourne constants) relating to the effect the numbers b(X), b(Y) and the complexity of the map f. These invariants have been studied when f is the blowup of all singular points of an arrangement of lines in 2 , of conics and of cubics. In the present note we extend these considerations to blowups of 2 at singular points of arrangements of curves of arbitrary degree d. The main result in this direction is stated in Theorem B. We also considerably generalize and modify the approach witnessed so far and study transversal arrangements of sufficiently positive curves on arbitrary surfaces with the non-negative Kodaira dimension. The main result obtained in this general setting is presented in Theorem A.

La conjecture de la négativité bornée prédit que pour toute surface complexe projective X, il existe un nombre b(X) tel que l’inégalité C 2 -b(X) ait lieu pour toute courbe réduite CX. Pour un morphisme birationnel f:YX, certains invariants (les constantes de Harbourne) ont été introduits afin de relier les nombres b(X) et b(Y) à la complexité de f. Ces invariants ont été étudiés quand f est l’éclatement en tous les points singuliers d’un arrangement de droites, de coniques et de cubiques. Dans cette note, nous étendons ces considérations aux éclatements de 2 aux points singuliers d’arrangements de courbes de degré arbitraire d. Le résultat principal dans cette direction est le théorème B. Ensuite, nous généralisons considérablement et modifions l’approche usuelle afin d’étudier les arrangements transverses de courbes suffisamment positives sur n’importe quelle surface ayant dimension de Kodaira positive ou nulle. Le principal résulat obtenu dans ce cadre général est le théorème A.

Received : 2016-02-12
Revised : 2016-06-30
Accepted : 2017-03-15
Published online : 2017-12-14
DOI : https://doi.org/10.5802/aif.3149
Classification:  14C20,  14J70
Keywords: curve arrangements, algebraic surfaces, Miyaoka inequality, blow-ups, negative curves, bounded negativity conjecture
@article{AIF_2017__67_6_2719_0,
     author = {Pokora, Piotr and Roulleau, Xavier and Szemberg, Tomasz},
     title = {Bounded negativity, Harbourne constants and transversal arrangements of curves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     pages = {2719-2735},
     doi = {10.5802/aif.3149},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2017__67_6_2719_0}
}
Pokora, Piotr; Roulleau, Xavier; Szemberg, Tomasz. Bounded negativity, Harbourne constants and transversal arrangements of curves. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2719-2735. doi : 10.5802/aif.3149. http://www.numdam.org/item/AIF_2017__67_6_2719_0/

[1] Bauer, Thomas; Di Rocco, Sandra; Harbourne, Brian; Huizenga, Jack; Lundman, Anders; Pokora, Piotr; Szemberg, Tomasz Bounded negativity and arrangements of lines, Int. Math. Res. Not. (2015) no. 19, pp. 9456-9471 | Article | MR 3431599 | Zbl 1330.14007

[2] Bauer, Thomas; Harbourne, Brian; Knutsen, Andreas Leopold; Küronya, Alex; Müller-Stach, Stefan; Roulleau, Xavier; Szemberg, Tomasz Negative curves on algebraic surfaces, Duke Math. J., Tome 162 (2013) no. 10, pp. 1877-1894 | Article | MR 3079262 | Zbl 1272.14009

[3] Dorfmeister, Josef G. Bounded Negativity and Symplectic 4-Manifolds (2016) (https://arxiv.org/abs/1601.01202 )

[4] Greuel, Gert-Martin; Lossen, Christoph; Shustin, Eugenii Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebr. Geom., Tome 9 (2000) no. 4, pp. 663-710 | MR 1775310 | Zbl 1037.14009

[5] Harbourne, Brian Global aspects of the geometry of surfaces, Ann. Univ. Paedagog. Crac. Stud. Math., Tome 9 (2010), pp. 5-41 | MR 2608654 | Zbl 1247.14006

[6] Hemperly, John C. The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Am. J. Math., Tome 94 (1972), pp. 1078-1100 | Article | MR 0407334 | Zbl 0259.32010

[7] Hirzebruch, Friedrich Arrangements of lines and algebraic surfaces, Arithmetic and geometry, Vol. II: Geometry, Birkhäuser (Progress in Mathematics) Tome 36 (1983), pp. 113-140 | MR 717609 | Zbl 0527.14033

[8] Hirzebruch, Friedrich Singularities of algebraic surfaces and characteristic numbers, The Lefschetz centennial conference, Part I (Mexico City, 1984), American Mathematical Society (Contemporary Mathematics) Tome 58 (1986), pp. 141-155 | Article | MR 860410 | Zbl 0601.14030

[9] Miyaoka, Yoichi The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann., Tome 268 (1984) no. 2, pp. 159-171 | Article | MR 744605 | Zbl 0521.14013

[10] Miyaoka, Yoichi The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan theorem, Publ. Res. Inst. Math. Sci., Tome 44 (2008) no. 2, pp. 403-417 | Article | MR 2426352 | Zbl 1162.14026

[11] Namba, Makoto Branched coverings and algebraic functions, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, Pitman Research Notes in Mathematics Series, Tome 161 (1987), viii+201 pages | MR 933557 | Zbl 0706.14017

[12] Pokora, Piotr; Tutaj-Gasińska, Halszka Harbourne constants and conic configurations on the projective plane, Math. Nachr., Tome 289 (2016) no. 7, pp. 888-894 | Article | MR 3503823 | Zbl 1343.14008

[13] Roulleau, Xavier Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Int. Math. Res. Not., Tome 2017 (2017) no. 8, pp. 2480-2496 | Article

[14] Sakai, Fumio Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann., Tome 254 (1980) no. 2, pp. 89-120 | Article | MR 597076 | Zbl 0431.14011

[15] Tang, Li Zhong Algebraic surfaces associated to arrangements of conics, Soochow J. Math., Tome 21 (1995) no. 4, pp. 427-440 | MR 1362309 | Zbl 0862.14024