On considère une variété compacte de codimension quelconque qui vérifie certaines conditions géométriques en terme de sa forme de Levi. Sur ces variétés compactes, on construit une déformation du fibré en droites trivial sur qui est topologiquement trivial sur mais qui n’admet même pas de trivialization locale sur un ouvert arbitraire de . En particulier, nos résultats s’appliquent au cas de variétés compactes Lorentziennes du type hypersurface.
We consider compact manifolds of arbitrary codimension that satisfy certain geometric conditions in terms of their Levi form. Over these compact manifolds, we construct a deformation of the trivial line bundle over which is topologically trivial over but fails to be even locally trivializable over any open subset of . In particular, our results apply to compact Lorentzian manifolds of hypersurface type.
Accepté le : 2017-06-14
Publié le : 2018-04-17
Classification : 32V05, 32G07
Mots clés : fibrés vectoriel , repère local, variétés Lorentziennes
@article{AIF_2018__68_1_101_0, author = {Brinkschulte, Judith and Hill, C. Denson}, title = {Non locally trivializable <span class="mathjax-formula">$CR$</span> line bundles over compact Lorentzian <span class="mathjax-formula">$CR$</span> manifolds}, journal = {Annales de l'Institut Fourier}, pages = {101--108}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3152}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_1_101_0/} }
Brinkschulte, Judith; Hill, C. Denson. Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 101-108. doi : 10.5802/aif.3152. http://archive.numdam.org/item/AIF_2018__68_1_101_0/
[1] On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981), pp. 365-404 | Zbl 0482.35061
[2] Obstructions to finite dimensional cohomology of abstract Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 15 (2016), pp. 343-354 | Zbl 1337.32047
[3] On the nonvanishing of abstract Cauchy–Riemann cohomology groups, Math. Ann., Volume 363 (2016) no. 3-4, pp. 1701-1715 | Article | Zbl 06618545
[4] The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, Volume 57, Princeton University Press, 1972, viii+146 pages | Zbl 0247.35093
[5] Counterexamples to Newlander-Nirenberg up to the boundary, Several complex variables and complex geometry (Proceedings of Symposia in Pure Mathematics) Volume 52, American Mathematical Society, 1991, pp. 191-197 | Zbl 0751.53012
[6] Pseudoconcave manifolds, Complex analysis and geometry (Lecture Notes in Pure and Applied Mathematics) Volume 173 (1996), pp. 275-297 | Zbl 0921.32004
[7] A weak pseudoconcavity condition for abstract almost manifolds, Invent. Math., Volume 142 (2000) no. 2, pp. 251-283 | Article | Zbl 0973.32018
[8] The integrability problem for vector bundles, Several complex variables and complex geometry (Proceedings of Symposia in Pure Mathematics) Volume 52, American Mathematical Society, 1991, pp. 355-368 | Zbl 0744.32002