Soient une surface hyperbolique et une fonction monotone. Nous étudions l’adherence dans le fibré projectif tangent de l’ensemble des géodésiques telles que . En particulier nous montrons que si est non bornée et sous-linéaire alors la dimension de Hausdorff de cet ensemble est strictement entre et .
Suppose that is a hyperbolic surface and a monotonic function. We study the closure in the projective tangent bundle of the set of all geodesics satisfying . For instance we prove that if is unbounded and sublinear then this set has Hausdorff dimension strictly bounded between and .
Révisé le : 2017-01-31
Accepté le : 2017-03-14
Publié le : 2018-04-17
Classification : 30F10, 30F60
Mots clés : géodesiques, surfaces hyperboliques, auto-intersection, dimension de Hausdorff
@article{AIF_2018__68_1_171_0, author = {Lenzhen, Anna and Souto, Juan}, title = {Variations on a theorem of Birman and Series}, journal = {Annales de l'Institut Fourier}, pages = {171--194}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3156}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_1_171_0/} }
Lenzhen, Anna; Souto, Juan. Variations on a theorem of Birman and Series. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 171-194. doi : 10.5802/aif.3156. http://archive.numdam.org/item/AIF_2018__68_1_171_0/
[1] Hyperbolic structures on surfaces and geodesic currents (to appear)
[2] The Cheeger Constant, Isoperimetric Problems, and Hyperbolic Surfaces (2016) (https://arxiv.org/abs/1509.08993)
[3] Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology, Volume 24 (1985), pp. 217-225 | Article | Zbl 0568.57006
[4] Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986), pp. 71-158 | Article | Zbl 0671.57008
[5] The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 39-162 | Article | Zbl 0653.32022
[6] A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 213-230 | Article | Zbl 0501.53030
[7] On the period matrix of a Riemann surface of large genus, Invent. Math., Volume 117 (1994) no. 1, pp. 27-56 | Article | Zbl 0814.14033
[8] Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, Volume 9, Cambridge University Press, 1988, 105 pages | Zbl 0649.57008
[9] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton University Press, 1970, pp. 195-199 | Zbl 0212.44903
[10] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 | Article | Zbl 0336.30005
[11] Non-simple geodesics on surfaces (2014) (Ph. D. Thesis)
[12] The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | Article | Zbl 0439.30034