On homomorphisms between Cremona groups  [ Homomorphismes entre des groupes de Cremona ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 53-100.

On s’intéresse aux plongements algébriques du groupe de Cremona complexe à n variables Cr n dans des groupes de transformations birationnelles Bir(M) d’une varété algébrique M. D’abord on regarde un plongement de Cr 2 dans Cr 5 qui était découvert par Gizatullin. Puis on donne une classification de tous les plongements algébriques de Cr 2 dans Bir(M) pour des variétés M de dimension 3 et on généralise partiellement ce résultat aux plongements algébriques de Cr n dans Bir(M), où la dimension de M est n+1 (pour tout n). On obtient notamment une classification de toutes les action régulières de PGL n+1 () sur des variétés projectives lisses de dimension n+1 qui s’étendent vers des actions rationnelles de Cr n .

We look at algebraic embeddings of the complex Cremona group in n variables Cr n to the group of birational transformations Bir(M) of an algebraic variety M. First we study geometrical properties of an example of an embedding of Cr 2 into Cr 5 that is due to Gizatullin. In a second part, we give a full classification of all algebraic embeddings of Cr 2 into Bir(M), where M is a variety of dimension 3 and generalize this result partially to algebraic embeddings of Cr n into Bir(M), where the dimension of M is n+1, for arbitrary n. In particular, this yields a classification of all algebraic PGL n+1 ()-actions on smooth projective varieties of dimension n+1 that can be extended to rational actions of Cr n .

Reçu le : 2016-04-24
Révisé le : 2016-12-04
Accepté le : 2017-01-23
Publié le : 2018-04-17
DOI : https://doi.org/10.5802/aif.3151
Classification : 14E07,  14L30,  32M05
Mots clés : Groupe de Cremona, actions rationnelles des groupes
@article{AIF_2018__68_1_53_0,
     author = {Urech, Christian},
     title = {On homomorphisms between Cremona groups},
     journal = {Annales de l'Institut Fourier},
     pages = {53--100},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.5802/aif.3151},
     language = {en},
     url = {archive.numdam.org/item/AIF_2018__68_1_53_0/}
}
Urech, Christian. On homomorphisms between Cremona groups. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 53-100. doi : 10.5802/aif.3151. http://archive.numdam.org/item/AIF_2018__68_1_53_0/

[1] Akhiezer, Dmitri N. Lie group actions in complex analysis, Aspects of Mathematics, Volume 27, Friedr. Vieweg & Sohn, 1995, viii+201 pages | Article | Zbl 0845.22001

[2] Alberich-Carramiñana, Maria Geometry of the plane Cremona maps, Lecture Notes in Mathematics, Volume 1769, Springer, 2002, xvi+257 pages | Article | MR 1874328 (2002m:14008) | Zbl 0991.14008

[3] Artamkin, I. V. Stable bundles with c 1 =0 on rational surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Volume 54 (1990) no. 2, pp. 227-241 | Zbl 0719.14008

[4] Beauville, Arnaud; Colliot-Thélène, Jean-Louis; Sansuc, Jean-Jacques; Swinnerton-Dyer, Peter Variétés stablement rationnelles non rationnelles, Ann. Math., Volume 121 (1985) no. 2, pp. 283-318 | Article | MR 786350 (86m:14009) | Zbl 0589.14042

[5] Białynicki-Birula, B. A. Remarks on the action of an algebraic torus on k n I, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 14 (1966), pp. 177-181 | Zbl 0163.42901

[6] Blanc, Jérémy Conjugacy classes of affine automorphisms of 𝕂 n and linear automorphisms of n in the Cremona groups, Manuscr. Math., Volume 119 (2006) no. 2, pp. 225-241 | Article | MR 2215969 (2006m:14015) | Zbl 1093.14017

[7] Blanc, Jérémy Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Volume 14 (2009) no. 2, pp. 249-285 | Article | MR 2504924 (2010b:14021) | Zbl 1181.14014

[8] Blanc, Jérémy Symplectic birational transformations of the plane, Osaka J. Math., Volume 50 (2013) no. 2, pp. 573-590 http://projecteuclid.org/euclid.ojm/1371833501 | MR 3080816 | Zbl 1291.14023

[9] Blanc, Jérémy; Déserti, Julie Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 2, pp. 507-533 | MR 3410471 | Zbl 1342.14029

[10] Blanc, Jérémy; Furter, Jean-Philippe Topologies and structures of the Cremona groups, Ann. Math., Volume 178 (2013) no. 3, pp. 1173-1198 | Article | MR 3092478 | Zbl 1298.14020

[11] Blanc, Jérémy; Hedén, Isac The group of Cremona transformations generated by linear maps and the standard involution, Ann. Inst. Fourier, Volume 65 (2015) no. 6, pp. 2641-2680 | Article | Zbl 1333.14015

[12] Borel, Armand; Tits, Jacques Homomorphismes “abstraits” de groupes algébriques simples, Ann. Math., Volume 97 (1973), pp. 499-571 | Article | MR 0316587 (47 #5134) | Zbl 0272.14013

[13] Brion, Michel Spherical Varieties: An Introduction, Topological methods in algebraic transformation groups (Progress in Mathematics) Volume 80, Springer, 1989, pp. 11-26 | Zbl 0724.14034

[14] Brunella, Marco Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 5, pp. 569-594 | Article | Zbl 0893.32019

[15] Cantat, Serge Endomorphismes des variétés homogènes, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 237-262 | MR 2026896 | Zbl 1059.32003

[16] Cantat, Serge Morphisms between Cremona groups, and characterization of rational varieties, Compos. Math., Volume 150 (2014) no. 7, pp. 1107-1124 | Article | MR 3230847 | Zbl 1331.14020

[17] Cantat, Serge; Zeghib, Abdelghani Holomorphic actions, Kummer examples, and Zimmer program, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 3, pp. 447-489 | Article | MR 3014483 | Zbl 1280.22015

[18] Cerveau, Dominique; Déserti, Julie Birational maps preserving the contact structure on 3 (2016) (http://arxiv.org/abs/1602.08866v1, to appear in J. Math. Soc. Japan)

[19] Corti, Alessio; Kaloghiros, Anne-Sophie The Sarkisov program for Mori fibred Calabi-Yau pairs, Algebr. Geom., Volume 3 (2016) no. 3, pp. 370-384 | Article | Zbl 06741272

[20] Demazure, Michel Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 507-588 | Article | MR 0284446 (44 #1672) | Zbl 0223.14009

[21] Déserti, Julie On the Cremona group: some algebraic and dynamical properties (2006) https://tel.archives-ouvertes.fr/tel-00125492 (Theses)

[22] Déserti, Julie Sur les automorphismes du groupe de Cremona, Compos. Math., Volume 142 (2006) no. 6, pp. 1459-1478 | Article | MR 2278755 (2007g:14008) | Zbl 1109.14015

[23] Déserti, Julie Some properties of the group of birational maps generated by the automorphisms of n and the standard involution (2015), pp. 893-905 (http://arxiv.org/abs/1403.0346v1) | Zbl 1331.14018

[24] Dieudonné, Jean A. La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 5, Springer, 1971, viii+129 pages | MR 0310083 (46 #9186) | Zbl 0221.20056

[25] Diller, Jeffrey; Lin, Jan-Li Rational surface maps with invariant meromorphic two-forms, Math. Ann., Volume 364 (2016) no. 1-2, pp. 313-352 | Article | MR 3451389 | Zbl 06540657

[26] Dolgachev, Igor V. Classical algebraic geometry. A modern view, Cambridge Univ. Press, 2012, xii+639 pages (A modern view) | Article | MR 2964027 | Zbl 1252.14001

[27] Enriques, Federigo Sui gruppi continui di trasformazioni cremoniane nel piano, Rend. Accad. Lincei, 1er sem, Volume 5 (1893) no. 1, pp. 468-473 | Zbl 25.0643.02

[28] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Mathematics, Volume 129, Springer, 1991, xvi+551 pages | Article | Zbl 0744.22001

[29] Gizatullin, Marat On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996) (London Math. Soc. Lecture Note Ser.) Volume 264, Cambridge University Press, 1999, pp. 111-150 | Article | MR 1714823 (2000i:14018) | Zbl 0980.14011

[30] Gizatullin, Marat Klein’s conjecture for contact automorphisms of the three-dimensional affine space, Mich. Math. J., Volume 56 (2008) no. 1, pp. 89-98 | Article | MR 2433658 | Zbl 1159.14008

[31] de la Harpe, Pierre Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000, vi+310 pages | MR 1786869 (2001i:20081) | Zbl 0965.20025

[32] Hudson, Hilda P. Cremona transformation in Plane and Space, Cambridge University Press, 1927

[33] Humphreys, James E. Linear algebraic groups, Graduate Texts in Mathematics, Volume 21, Springer, 1975, xiv+247 pages | Zbl 0325.20039

[34] Lamy, Stéphane Une preuve géométrique du théorème de Jung, Enseign. Math., Volume 48 (2002) no. 3-4, pp. 291-315 | MR 1955604 (2003m:14099) | Zbl 1044.14035

[35] Lamy, Stéphane On the genus of birational maps between threefolds, Automorphisms in birational and affine geometry (Springer Proceedings in Mathematics & Statistics) Volume 79, Springer, 2014, pp. 141-147 | Article | MR 3229349 | Zbl 1326.14024

[36] Pan, Ivan Une remarque sur la génération du groupe de Cremona, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 1, pp. 95-98 | Article | MR 1686984 (2000b:14015) | Zbl 0972.14006

[37] Popov, Vladimir L. Tori in the Cremona groups, Izv. Ross. Akad. Nauk Ser. Mat., Volume 77 (2013) no. 4, pp. 103-134 | MR 3135700 | Zbl 1278.14065

[38] Procesi, Claudio Lie groups. An approach through invariants and representations, Universitext, Springer, 2007, xxiv+596 pages | MR 2265844 (2007j:22016) | Zbl 1154.22001

[39] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, Volume 67, Springer, 1979, viii+241 pages (Translated from the French by Marvin Jay Greenberg) | MR 554237 (82e:12016) | Zbl 0423.12016

[40] Serre, Jean-Pierre Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki 2008/2009 (Astérisque) Volume 332, Société Mathématique de France, 2010, pp. 75-100 | Zbl 1257.14012

[41] Stampfli, Immanuel A note on automorphisms of the affine Cremona group, Math. Res. Lett., Volume 20 (2013) no. 6, pp. 1177-1181 | Article | MR 3228629 | Zbl 1304.14017

[42] Sumihiro, Hideyasu Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | Article | MR 0337963 | Zbl 0277.14008

[43] Umemura, Hiroshi Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Volume 87 (1982), pp. 59-78 http://projecteuclid.org/euclid.nmj/1118786899 | Article | MR 676586 (84b:14005) | Zbl 0466.14005

[44] Umemura, Hiroshi On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Volume 88 (1982), pp. 213-246 http://projecteuclid.org/euclid.nmj/1118787013 | Article | MR 683251 (84g:14013) | Zbl 0476.14004

[45] Umemura, Hiroshi On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.) Volume 6, North-Holland, Amsterdam, 1985, pp. 349-436 | MR 803342 (87d:14008) | Zbl 0571.14006

[46] Urech, Christian Subgroups of Cremona groups (2017) (Ph. D. Thesis)

[47] Weil, André On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | Article | Zbl 0065.14201

[48] Williams, A. R. Birational transformations in 4-space and 5-space, Bull. Am. Math. Soc., Volume 44 (1938) no. 4, pp. 272-278 | Article | MR 1563724 | Zbl 0018.27201

[49] Zaitsev, Dmitri Regularization of birational group operations in the sense of Weil, J. Lie Theory, Volume 5 (1995) no. 2, pp. 207-224 | Zbl 0873.14012

[50] Zhang, De-Qi The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold, Adv. Math., Volume 223 (2010) no. 2, pp. 405-415 | Article | MR 2565534 | Zbl 1181.32023