Infinitely many solutions to the Yamabe problem on noncompact manifolds  [ Un nombre infini de solutions pour le problème de Yamabe sur les variétés non compactes ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 589-609.

On établit l’existence d’une infinité de métriques complètes à courbure scalaire constante dans une classe conforme prescrite sur des variétés produit non-compactes. Celles-ci incluent produits de variétés fermés à courbure scalaire constante et des espaces symétriques simplement connexes de type non-compact ou Euclidien. En particulier, 𝕊 m × d , m2, d1, et 𝕊 m × d , 2d<m. Par conséquent, on obtient une infinité de solutions périodiques au problème de Yamabe singulier sur 𝕊 m 𝕊 k pour tout 0k<(m-2)/2, l’ensemble maximal pour laquelle la non-unicité est possible. Nous montrons également que tous les groupes de Bieberbach sur Iso( d ) sont des périodes de branches de bifurcation de solutions de Yamabe sur 𝕊 m × d , m2, d1.

We establish the existence of infinitely many complete metrics with constant scalar curvature in conformal classes of certain noncompact product manifolds. These include products of closed manifolds with constant positive scalar curvature and simply-connected symmetric spaces of noncompact or Euclidean type; in particular, 𝕊 m × d , m2, d1, and 𝕊 m × d , 2d<m. As a consequence, we obtain infinitely many periodic solutions to the singular Yamabe problem on 𝕊 m 𝕊 k , for all 0k<(m-2)/2, the maximal range where nonuniqueness is possible. We also show that all Bieberbach groups in Iso( d ) are periods of bifurcating branches of solutions to the Yamabe problem on 𝕊 m × d , m2, d1.

Reçu le : 2016-10-21
Accepté le : 2017-09-18
Publié le : 2018-04-17
DOI : https://doi.org/10.5802/aif.3172
Classification : 53A30,  53C21,  35J60,  58J55,  58E11,  58E15
Mots clés : Problème de Yamabe, problème de Yamabe singulier, courbure scalaire constante, non-unicité des solutions, inégalité de Aubin, bifurcation
@article{AIF_2018__68_2_589_0,
     author = {Bettiol, Renato G. and Piccione, Paolo},
     title = {Infinitely many solutions to the Yamabe problem on noncompact manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {589--609},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3172},
     language = {en},
     url = {archive.numdam.org/item/AIF_2018__68_2_589_0/}
}
Bettiol, Renato G.; Piccione, Paolo. Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 589-609. doi : 10.5802/aif.3172. http://archive.numdam.org/item/AIF_2018__68_2_589_0/

[1] Akutagawa, Kazuo; Florit, Luis A.; Petean, Jimmy On Yamabe constants of Riemannian products, Commun. Anal. Geom., Volume 15 (2007) no. 5, pp. 947-969 http://projecteuclid.org/euclid.cag/1210944225 | Article | MR 2403191 (2009i:53030) | Zbl 1147.53032

[2] Akutagawa, Kazuo; Neves, André 3-manifolds with Yamabe invariant greater than that of 3 , J. Differ. Geom., Volume 75 (2007) no. 3, pp. 359-386 http://projecteuclid.org/euclid.jdg/1175266277 | Article | MR 2301449 | Zbl 1119.53027

[3] Aubin, Thierry Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976) no. 3, pp. 269-296 | MR 0431287 (55 #4288) | Zbl 0336.53033

[4] Aubin, Thierry The scalar curvature, Differential geometry and relativity (Mathematical Physics and Applied Mathematics) Volume 3, Reidel, 1976, pp. 5-18 | MR 0433500 | Zbl 0345.53029

[5] Aubin, Thierry Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998, xviii+395 pages | Article | MR 1636569 (99i:58001) | Zbl 0896.53003

[6] Aviles, Patricio; McOwen, Robert C. Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differ. Geom., Volume 27 (1988) no. 2, pp. 225-239 http://projecteuclid.org/euclid.jdg/1214441781 | Article | MR 925121 (89b:58225) | Zbl 0648.53021

[7] Berger, Marcel; Gauduchon, Paul; Mazet, Edmond Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Volume 194, Springer, 1971, vii+251 pages | MR 0282313 | Zbl 0223.53034

[8] Berti, Massimiliano; Malchiodi, Andrea Non-compactness and multiplicity results for the Yamabe problem on S n , J. Funct. Anal., Volume 180 (2001) no. 1, pp. 210-241 | Article | MR 1814428 (2002b:53049) | Zbl 0979.53038

[9] Bettiol, Renato G.; Derdzinski, Andrzej; Piccione, Paolo Teichmüller theory and collapse of flat manifolds (2017) (to appear in Ann. Mat. Pura Appl., http://arxiv.org/abs/1705.08431)

[10] Bettiol, Renato G.; Piccione, Paolo Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres, Calc. Var. Partial Differ. Equ., Volume 47 (2013) no. 3-4, pp. 789-807 | Article | MR 3070564 | Zbl 1272.53042

[11] Bettiol, Renato G.; Piccione, Paolo Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, Pac. J. Math., Volume 266 (2013) no. 1, pp. 1-21 | Article | MR 3105774 | Zbl 1287.53030

[12] Bettiol, Renato G.; Piccione, Paolo; Santoro, Bianca Bifurcation of periodic solutions to the singular Yamabe problem on spheres, J. Differ. Geom., Volume 103 (2016) no. 2, pp. 191-205 http://projecteuclid.org/euclid.jdg/1463404117 | Article | MR 3504948 | Zbl 1348.53044

[13] Borel, Armand Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | Article | MR 0146301 (26 #3823) | Zbl 0116.38603

[14] Brandolini, Luca; Rigoli, Marco; Setti, Alberto G. Positive solutions of Yamabe type equations on complete manifolds and applications, J. Funct. Anal., Volume 160 (1998) no. 1, pp. 176-222 | Article | MR 1658696 (2000a:35051) | Zbl 0923.58049

[15] Buser, Peter A geometric proof of Bieberbach’s theorems on crystallographic groups, Enseign. Math., Volume 31 (1985) no. 1-2, pp. 137-145 | MR 798909 | Zbl 0582.20033

[16] Caffarelli, Luis A.; Gidas, Basilis; Spruck, Joel Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297 | Article | MR 982351 (90c:35075) | Zbl 0702.35085

[17] Carlotto, Alessandro; Chodosh, Otis; Rubinstein, Yanir A. Slowly converging Yamabe flows, Geom. Topol., Volume 19 (2015) no. 3, pp. 1523-1568 | Article | MR 3352243 | Zbl 1326.53089

[18] Charlap, Leonard S. Bieberbach groups and flat manifolds, Universitext, Springer, 1986, xiv+242 pages | Article | MR 862114 | Zbl 0608.53001

[19] Cheng, Shiu Yuen Eigenvalue comparison theorems and its geometric applications, Math. Z., Volume 143 (1975) no. 3, pp. 289-297 | Article | MR 0378001 | Zbl 0329.53035

[20] Deligne, Pierre Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci., Paris, Sér. A, Volume 287 (1978) no. 4, p. A203-A208 | MR 507760 (80g:20056) | Zbl 0416.20042

[21] Druţu, Cornelia; Sapir, Mark Non-linear residually finite groups, J. Algebra, Volume 284 (2005) no. 1, pp. 174-178 | Article | MR 2115010 (2005i:20045) | Zbl 1076.20021

[22] Ferrand, Jacqueline The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | Article | MR 1371767 (97c:53044) | Zbl 0866.53027

[23] Grosse, Nadine The Yamabe equation on manifolds of bounded geometry, Commun. Anal. Geom., Volume 21 (2013) no. 5, pp. 957-978 | Article | MR 3152969 | Zbl 1296.53076

[24] Hebey, Emmanuel; Vaugon, Michel Meilleures constantes dans le théorème d’inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J., Volume 41 (1992) no. 2, pp. 377-407 | Article | MR 1183349 (93m:58121) | Zbl 0764.53029

[25] Henry, Guillermo; Petean, Jimmy Isoparametric hypersurfaces and metrics of constant scalar curvature, Asian J. Math., Volume 18 (2014) no. 1, pp. 53-67 | Article | MR 3215339 | Zbl 1292.53041

[26] Henry, Guillermo; Petean, Jimmy On Yamabe constants of products with hyperbolic spaces, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1387-1400 | Article | MR 3319976 | Zbl 1318.53031

[27] Hiss, Gerhard; Szczepański, Andrzej On torsion free crystallographic groups, J. Pure Appl. Algebra, Volume 74 (1991) no. 1, pp. 39-56 | Article | MR 1129128 (92i:20053) | Zbl 0760.20015

[28] Jin, Zhi Ren A counterexample to the Yamabe problem for complete noncompact manifolds, Partial differential equations (Tianjin, 1986) (Lecture Notes in Mathematics) Volume 1306, Springer, 1988, pp. 93-101 | Article | MR 1032773 (91a:53065) | Zbl 0648.53022

[29] Kobayashi, Osamu Scalar curvature of a metric with unit volume, Math. Ann., Volume 279 (1987) no. 2, pp. 253-265 | Article | MR 919505 (89a:53048) | Zbl 0611.53037

[30] Lee, John M.; Parker, Thomas H. The Yamabe problem, Bull. Am. Math. Soc., Volume 17 (1987) no. 1, pp. 37-91 | Article | MR 888880 (88f:53001) | Zbl 0633.53062

[31] de Lima, Levi L.; Piccione, Paolo; Zedda, Michela On bifurcation of solutions of the Yamabe problem in product manifolds, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 2, pp. 261-277 | Article | MR 2901197 | Zbl 1239.58005

[32] Long, Darren; Reid, Alan W. Surface subgroups and subgroup separability in 3-manifold topology (Rio de Janeiro, 2005), Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2005, 53 pages | MR 2164951 (2006f:57018) | Zbl 1074.57010

[33] Mazzeo, Rafe Regularity for the Singular Yamabe Problem, Indiana Univ. Math. J., Volume 40 (1991) no. 4, pp. 1277-1299 | Article | MR 1142715 (92k:53071) | Zbl 0770.53032

[34] Mazzeo, Rafe; Smale, Nathan Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Differ. Geom., Volume 34 (1991) no. 3, pp. 581-621 http://projecteuclid.org/euclid.jdg/1214447536 | Article | MR 1139641 (92i:53034) | Zbl 0759.53029

[35] Petean, Jimmy; Ruiz, Juan Miguel On the Yamabe constants of S 2 × 3 and S 3 × 2 , Differ. Geom. Appl., Volume 31 (2013) no. 2, pp. 308-319 | Article | MR 3032651 | Zbl 1280.53042

[36] Pollack, Daniel Nonuniqueness and high energy solutions for a conformally invariant scalar equation, Commun. Anal. Geom., Volume 1 (1993) no. 3-4, pp. 347-414 | Article | MR 1266473 (94m:58051) | Zbl 0848.58011

[37] Ramírez-Ospina, Héctor Fabián Multiplicity of constant scalar curvature metrics in T k ×M, Nonlinear Anal., Volume 109 (2014), pp. 103-112 | Article | MR 3247296 | Zbl 1296.58006

[38] Ratcliffe, John G. Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, Volume 149, Springer, 2006, xii+779 pages | MR 2249478 (2007d:57029) | Zbl 1106.51009

[39] Schoen, Richard Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., Volume 20 (1984) no. 2, pp. 479-495 http://projecteuclid.org/euclid.jdg/1214439291 | Article | MR 788292 (86i:58137) | Zbl 0576.53028

[40] Schoen, Richard Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) (Lecture Notes in Mathematics) Volume 1365, Springer, 1989, pp. 120-154 | Article | MR 994021 (90g:58023) | Zbl 0702.49038

[41] Schoen, Richard On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | Article | MR 1334876 (96h:53047) | Zbl 0835.53015

[42] Szczepański, Andrzej Geometry of crystallographic groups, Algebra and Discrete Mathematics, Volume 4, World Scientific, 2012, xii+195 pages | Article | MR 2978307 | Zbl 1260.20070

[43] Trudinger, Neil S. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Volume 22 (1968), pp. 265-274 | MR 0240748 (39 #2093) | Zbl 0159.23801

[44] Wolf, Joseph A. Local and global equivalence for flat affine manifolds with parallel geometric structures, Geom. Dedicata, Volume 2 (1973), pp. 127-132 | Article | MR 0322748 | Zbl 0279.53039

[45] Yamabe, Hidehiko On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., Volume 12 (1960), pp. 21-37 | MR 0125546 (23 #A2847) | Zbl 0096.37201