Holomorphic curves in compact Shimura varieties  [ Courbes holomorphiques dans les variétés compactes de Shimura ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 647-659.

On démontre un analogue hyperbolique du théorème de Bloch–Ochiai sur l’adhérence de Zariski d’une courbe holomorphe dans une variété abélienne.

We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties.

Reçu le : 2016-09-07
Révisé le : 2017-06-28
Accepté le : 2017-09-13
Publié le : 2018-04-17
DOI : https://doi.org/10.5802/aif.3174
Classification : 14G35,  32A10,  03C64
Mots clés : variété de Shimura, courbes holomorphiques, o-minimalité
@article{AIF_2018__68_2_647_0,
     author = {Ullmo, Emmanuel and Yafaev, Andrei},
     title = {Holomorphic curves in compact Shimura varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {647--659},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3174},
     language = {en},
     url = {archive.numdam.org/item/AIF_2018__68_2_647_0/}
}
Ullmo, Emmanuel; Yafaev, Andrei. Holomorphic curves in compact Shimura varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 647-659. doi : 10.5802/aif.3174. http://archive.numdam.org/item/AIF_2018__68_2_647_0/

[1] Alexander, Herbert Volumes of varieties in projective space and in Grassmannians, Trans. Am. Math. Soc., Volume 289 (1974), pp. 237-249 | Article | Zbl 0285.32008

[2] Deligne, Pierre Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis, 1977) (Proceedings of Symposia in pure Mathematics) Volume 33 (1979), pp. 247-289 | Zbl 0437.14012

[3] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, Volume 248, Cambridge University Press, 1998, x+180 pages | Zbl 0953.03045

[4] Klingler, Bruno; Ullmo, Emmanuel; Yafaev, Andrei The hyperbolic Ax-Lindemann-Weierstrass conjecture, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 333-360 | Article | Zbl 1372.14016

[5] Kobayashi, Shoshichi Hyperbolic Complex Spaces, Grundlehren der Mathematischen Wissenschaften, Volume 318, Springer, 1998, xiii+471 pages | Zbl 0917.32019

[6] Mok, Ngaiming Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Mathematics, Volume 6, World Scientific, 1989, xiv+278 pages | Zbl 0912.32026

[7] Moonen, Ben Linearity properties of Shimura varieties. I., J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | Zbl 0956.14016

[8] Pila, Jonathan; Wilkie, Alex J. The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | Article | Zbl 1217.11066

[9] Ullmo, Emmanuel Applications du theorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014) no. 2, pp. 175-190 | Article | Zbl 1326.14062

[10] Ullmo, Emmanuel; Andrei, Yafaev Hyperbolic Ax-Lindemann theorem in the co-compact case, Duke Math. J., Volume 163 (2014) no. 2, pp. 433-463 | Article | Zbl 1375.14096

[11] Ullmo, Emmanuel; Andrei, Yafaev o-minimal flows on abelian varieties, Q. J. Math, Volume 163 (2017) no. 2, pp. 359-367 | Article | Zbl 06798572