Soit un nombre premier et un corps de nombres. Soit une variété abélienne définie sur . Dans cet article nous prouvons le résultat suivant : si contient un élément d’ordre divisant ne fixant aucun élément non nul de et que est trivial, alors satisfait le principe de divisibilité locale globale par pour tout . En outre nous démontrons un résultat similaire sans la condition , dans le cas particulier où est une variété abélienne principalement polarisée. Ensuite nous obtenons un résultat plus précis lorsque est de dimension . Enfin nous démontrons que l’hypothèse sur l’ordre de est nécessaire par un contre-exemple.
Dans l’Appendice, nous expliquons le lien entre nos résultats et une question de Cassels sur la divisibilité du groupe de Tate–Shafarevich, qui fut également étudiée par Ciperiani et Stix ainsi que Creutz.
Let be a prime number and let be a number field. Let be an abelian variety defined over . We prove that if contains an element of order dividing not fixing any non-trivial element of and is trivial, then the local-global divisibility by holds for for every . Moreover, we prove a similar result without the hypothesis on the triviality of , in the particular case where is a principally polarized abelian variety. Then, we get a more precise result in the case when has dimension . Finally, we show that the hypothesis over the order of is necessary, by providing a counterexample.
In the Appendix, we explain how our results are related to a question of Cassels on the divisibility of the Tate–Shafarevich group, studied by Ciperiani and Stix and Creutz.
Révisé le : 2017-05-16
Accepté le : 2017-06-14
Publié le : 2018-04-17
Classification : 11R34, 11G10
Mots clés : Local-global, Cohomologie galoisienne, variétés abéliennes, surfaces abéliennes
@article{AIF_2018__68_2_847_0, author = {Gillibert, Florence and Ranieri, Gabriele}, title = {On the local-global divisibility over abelian varieties}, journal = {Annales de l'Institut Fourier}, pages = {847--873}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3179}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_2_847_0/} }
Gillibert, Florence; Ranieri, Gabriele. On the local-global divisibility over abelian varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 847-873. doi : 10.5802/aif.3179. http://archive.numdam.org/item/AIF_2018__68_2_847_0/
[1] Class field Theory, Benjamin, 1968, xxvi+259 pages | Zbl 0176.33504
[2] Finite group theory, Cambridge Studies in Advanced Mathematics, Volume 10, Cambridge University Press, 2000, xi+304 pages | Zbl 0997.20001
[3] Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math., Volume 700 (2015), pp. 175-207 | Zbl 1327.11040
[4] Locally trivial torsors that are not Weil-Châtelet divisible, Bull. Lond. Math. Soc, Volume 45 (2013) no. 5, pp. 935-942 | Article | Zbl 1296.11059
[5] On the local-global principle for divisibility in the cohomology of elliptic curves, Math. Res. Lett., Volume 23 (2016) no. 2, pp. 377-387 | Article | Zbl 06609373
[6] Canonical forms of Quaternary Abelian Substitutions in an Arbitrary Galois Field, Trans. Am. Math. Soc., Volume 2 (1901), pp. 103-138 | Article | Zbl 32.0130.02
[7] Explicit determination of the images of the Galois representations attached to abelian surfaces with , Exp. Math., Volume 11 (2002) no. 4, pp. 503-512 | Article | Zbl 1162.11347
[8] Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. Fr., Volume 129 (2001) no. 3, pp. 317-338 | Article | Zbl 0987.14016
[9] An analogue for elliptic curves of the Grunwald-Wang example, C. R., Math., Acad. Sci. Paris, Volume 338 (2004) no. 1, pp. 47-50 | Article | Zbl 1035.14007
[10] On local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 27-34 | Article | Zbl 1115.14011
[11] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981), pp. 481-502 | Article | Zbl 0471.14023
[12] Vanishing of some Galois cohomology groups of elliptic curves, Elliptic Curves, Modular Forms and Iwasawa Theory (Cambridge, 2015) (Springer Proceedings in Mathematics and Statistics) Volume 188 (2017), pp. 373-399 | Zbl 06740248
[13] Explicity surjectivity of Galois representations for abelian surfaces and -type varieties, J. Algebra, Volume 460 (2016), pp. 26-59 | Article | Zbl 1343.11058
[14] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | Article | Zbl 0936.11037
[15] Local-global divisibility by in elliptic curves defined over , Ann. Mat. Pura Appl., Volume 189 (2010) no. 4, pp. 17-23 | Article | Zbl 1208.11074
[16] On counterexamples to local-global divisibility in commutative algebraic groups, Acta Arith., Volume 148 (2011) no. 1, pp. 21-29 | Article | Zbl 1226.14041
[17] Local-Global Divisibility by in elliptic curves, Bull. Lond. Math. Soc., Volume 44 (2012) no. 4, pp. 789-802 | Article | Zbl 1254.11056
[18] On the minimal set for counterexamples to the Local-Global Divisibility principle, J. Algebra, Volume 415 (2014), pp. 290-304 | Article | Zbl 1321.11063
[19] Groupe de Brauer et arithméthique des groupes linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | Zbl 0468.14007
[20] Proprietés Galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | Article | Zbl 0235.14012
[21] Group Theory I, Grundlehren der mathematischen Wissenschaften, Volume 247, Springer, 1982, xiv+434 pages | Zbl 0472.20001
[22] Zur theorie des Potenzreste, Nieuw Arch. Wiskd., Volume 18 (1948) no. 2, pp. 58-61 | Zbl 0009.29801