Dans cet article on se propose de construire d’une manière purement locale des invariants partiels pour des groupes -divisibles munis d’endomorphismes, en utilisant des résultats de cohomologie cristalline. Ces invariants généralisent l’invariant de Hasse, et permettent d’étudier des familles de tels groupes. On étudie aussi différentes propriétés géométriques de ces invariants. Appliqués (par exemple) à certaines variétés de Shimura, ces invariants détectent certaines strates de Newton, notamment la strate -ordinaire.
In this article, we construct in a purely local way partial (Hasse) invariants for -divisible groups with given endomorphisms, using crystalline cohomology. These invariants generalises the classical Hasse invariant, and allow us to study families of such groups. We also study a few geometric properties of these invariants. Used in the context of Shimura varieties, for example, these invariants are detecting some Newton strata, including the -ordinary locus.
Révisé le : 2017-07-30
Accepté le : 2017-08-09
Publié le : 2018-11-22
Classification : 14L05, 11G25 11G18, 11G07, 11G15
Mots clés : Groupes -divisibles, cristaux et isocristaux, Variétés de Shimura, lieu -ordinaire, Stratification de Newton, invariants de Hasse, multiplication complexe et espaces de modules de groupes -divisibles.
@article{AIF_2018__68_4_1519_0, author = {Hernandez, Valentin}, title = {Invariants de Hasse <span class="mathjax-formula">$\mu $</span>-ordinaires}, journal = {Annales de l'Institut Fourier}, pages = {1519--1607}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3193}, language = {fr}, url = {archive.numdam.org/item/AIF_2018__68_4_1519_0/} }
Hernandez, Valentin. Invariants de Hasse $\mu $-ordinaires. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1519-1607. doi : 10.5802/aif.3193. http://archive.numdam.org/item/AIF_2018__68_4_1519_0/
[1] Hilbert modular varieties of low dimension, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, 2004, pp. 113-175 | Zbl 1118.11025
[2] Overconvergent modular sheaves and modular forms for , Isr. J. Math., Volume 201 (2014), pp. 299-359 | Article | Zbl 1326.14051
[3] Théorie des topos et cohomologie étale des schémas. Tome 2 (Artin, Michael; Grothendieck, Alexander; Verdier, J. L.; Deligne, Pierre; Saint-Donat, Bernard, eds.), Lecture Notes in Math., Volume 270, Springer, 1972, iv+418 pages | MR 0354653 | Zbl 0237.00012
[4] Théorie de Dieudonné cristalline. II, Lecture Notes in Math., Volume 930, Springer, Berlin, 1982, x+261 pages | MR 667344 | Zbl 0516.14015
[5] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, Princeton, N.J., 1978, vi+243 pages | MR 0491705 | Zbl 0383.14010
[6] Compatibility with duality for partial Hasse invariants (2016) (preprint)
[7] Groupes -divisibles avec condition de Pappas-Rapoport et invariants de Hasse, J. Éc. Polytech., Volume 4 (2017), pp. 935-972 http://jep.cedram.org/jep-bin/item?id=JEP_2017__4__935_0 | Article
[8] Torsion in the coherent cohomology of Shimura varieties and Galois representations (2015) (https://arxiv.org/abs/1507.05922)
[9] On the generic part of the cohomology of compact unitary Shimura varieties, Ann. Math., Volume 186 (2017) no. 3, pp. 649-766 | Zbl 06804004
[10] Périodes entieres de groupes p-divisibles sur une base générale, Bull. Soc. Math. France, Volume 143 (2015) no. 1, pp. 1-33 | Zbl 1319.14051
[11] Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | Zbl 0321.10026
[12] Fundamental algebraic geometry : Grothendieck’s FGA explained, Mathematical Surveys and Monographs, Volume 123, American Mathematical Society, 2005, x+339 pages | MR 2222646 | Zbl 1085.14001
[13] Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales (Astérisque) Volume 291, Société Mathématique de France, 2004, pp. 1-200 | Zbl 1196.11087
[14] La filtration canonique des points de torsion des groupes -divisibles, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 6, pp. 905-961 (With collaboration of Yichao Tian) | MR 2919687 | Zbl 1331.14044
[15] Groupes -divisibles sur les corps locaux, Astérisque, Volume 47-48, Société Mathématique de France, 1977, i+262 pages | MR 0498610
[16] Strata Hasse invariants, Hecke algebras and Galois representations (2015) (https://arxiv.org/abs/1507.05032)
[17] The -ordinary Hasse invariant of unitary Shimura varieties, J. Reine Angew. Math., Volume 728 (2017), pp. 137-151 | Zbl 06744770
[18] Algebraic geometry I. Schemes with examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010, viii+615 pages | Article | MR 2675155 | Zbl 1213.14001
[19] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 http://eudml.org/doc/103873 (Rédigé avec la collaboration de Jean Dieudonné) | Zbl 0153.22301
[20] Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de mathématiques supérieures, Volume 45, Presses de l’Université de Montréal, 1974 | Zbl 0331.14021
[21] The geometry of Newton strata in the reduction modulo of Shimura varieties of PEL type, Duke Math. J., Volume 164 (2015) no. 15, pp. 2809-2895 | Zbl 1335.14008
[22] Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade über einem algebraischen Funktionenkörper der Charakteristik p, Monatsh. Math. Phys., Volume 43 (1936), pp. 477-492 | Article | Zbl 0013.34102
[23] La filtration canonique des -modules -divisibles (2016) (https://arxiv.org/abs/1611.07396, to appear in Math. Ann.)
[24] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | Zbl 0607.10022
[25] -adic properties of modular schemes and modular forms, Modular Functions of one Variable III, Proc. internat. Summer School, Univ. Antwerp 1972 (Lecture Notes in Math.) Volume 350, Springer, 1973, pp. 69-190 | Zbl 0271.10033
[26] Slope filtration of -crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I (Astérisque) Volume 63, Société Mathématique de France, Paris, 1979, pp. 113-163 | MR 563463 | Zbl 0426.14007
[27] Serre–Tate local moduli, Algebraic surfaces (Orsay, 1976–78) (Lecture Notes in Math.) Volume 868, Springer, 1981, pp. 138-202 | MR 638600 | Zbl 0477.14007
[28] The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand, Volume 39 (1976) no. 1, pp. 19-55 | Zbl 0343.14008
[29] Generalized -ordinary Hasse invariants, J. Algebra, Volume 502 (2018), pp. 98-119 | Article | Zbl 06851771
[30] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 373-444 | Article | Zbl 0796.14014
[31] Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2201-2262 | Article | Zbl 1308.14046
[32] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Volume 39, Springer, 2000, xii + 208 pages | Zbl 0945.14005
[33] On the Hodge-Newton filtration for -divisible -modules, Math. Z., Volume 266 (2010) no. 1, pp. 193-205 | Article | Zbl 1218.14014
[34] Serre-Tate theory for moduli spaces of PEL type, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 223-269 | Article | Zbl 1107.11028
[35] Sur la théorie de Hida pour le groupe , Bull. Soc. Math. Fr., Volume 140 (2012) no. 3, pp. 335-400 | Zbl 1288.11063
[36] Formes modulaires surconvergentes, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | Article | Zbl 1316.11034
[37] On the classification and specialization of -isocrystals with additional structure, Compositio Math., Volume 103 (1996) no. 2, pp. 153-181 | MR 1411570 | Zbl 0874.14008
[38] Period spaces for -divisible groups, Annals of Mathematics Studies, Volume 141, Princeton University Press, 1996, xxii+324 pages | Article | MR 1393439 | Zbl 0873.14039
[39] On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | Article | Zbl 1345.14031
[40] Moduli of -divisible groups, Camb. J. Math., Volume 1 (2013) no. 2, pp. 145-237 | Article | MR 3272049 | Zbl 1349.14149
[41] On the Hodge-Newton filtration for p-divisible groups with additional structures, Int. Math. Res. Not., Volume 2014 (2011) no. 13, pp. 3582-3631 | Zbl 1304.14057
[42] Stacks Project, 2013 (http://stacks.math.columbia.edu)
[43] Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann., Volume 356 (2013) no. 4, pp. 1493-1550 | Article | Zbl 1314.14047
[44] Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 575-618 | Article | MR 1710754 | Zbl 0983.14024
[45] The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of abelian varieties (Texel Island, 1999) (Progress in Mathematics) Volume 195, Birkhäuser, Basel, 2001, pp. 441-471 | MR 1827029 | Zbl 1052.14026
[46] A Dieudonné theory for -divisible groups, Class field theory – its centenary and prospect. Proceedings of the 7th MSJ International Research Institute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998 (Advanced Studies in Pure Mathematics) Volume 30, Mathematical Society of Japan, 2001, pp. 139-160 | Zbl 1052.14048
[47] The display of a formal -divisible group, Cohomologies -adiques et applications arithmétiques (I) (Astérisque), Société Mathématique de France, 2002, pp. 127-248 | Zbl 1008.14008