Nous étudions les frontières d’horofonctions des géométries de Hilbert et de Thompson, et des espaces de Banach, en dimension arbitraire. En comparant les frontières de ces espaces, nous montrons que les seules géométries de Hilbert et de Thompson qui sont isométriques à des espaces de Banach sont celles qui sont définies sur le cône de fonctions continues positives sur un espace compact.
We study the horofunction boundaries of Hilbert and Thompson geometries, and of Banach spaces, in arbitrary dimension. By comparing the boundaries of these spaces, we show that the only Hilbert and Thompson geometries that are isometric to Banach spaces are the ones defined on the cone of positive continuous functions on a compact space.
Révisé le : 2017-05-07
Accepté le : 2017-06-14
Publié le : 2018-11-22
Classification : 46A40, 46B04, 46A55
Mots clés : Hilbert metric, cone, isometry, Banach space, horofunction boundary
@article{AIF_2018__68_5_1831_0, author = {Walsh, Cormac}, title = {Hilbert and Thompson geometries isometric to infinite-dimensional Banach spaces}, journal = {Annales de l'Institut Fourier}, pages = {1831--1877}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3198}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_5_1831_0/} }
Walsh, Cormac. Hilbert and Thompson geometries isometric to infinite-dimensional Banach spaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 1831-1877. doi : 10.5802/aif.3198. http://archive.numdam.org/item/AIF_2018__68_5_1831_0/
[1] The max-plus Martin boundary, Doc. Math., Volume 14 (2009), pp. 195-240 | MR MR2538616 | Zbl 1182.31017
[2] Compact convex sets and boundary integrals Volume 57, Springer, 1971, x+210 pages (Ergebnisse der Mathematik und ihrer Grenzgebiete) | MR 0445271 | Zbl 0209.42601
[3] Infinite dimensional analysis: a hitchhiker’s guide, Springer, 2006, xxii+703 pages | MR 2378491 | Zbl 1156.46001
[4] Principles of real analysis, Academic Press, 1998, xii+415 pages | MR 1669668 | Zbl 1006.28001
[5] Cones and duality, Graduate Studies in Mathematics, Volume 84, American Mathematical Society, 2007, xiv+279 pages | Article | MR 2317344 | Zbl 1127.46002
[6] Majorization in de Branges spaces. III. Division by Blaschke products, Algebra Anal., Volume 21 (2009) no. 6, pp. 3-46 | Article | MR 2604541 | Zbl 1213.46023
[7] Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge, Arch. Math., Volume 14 (1963), pp. 415-421 | Article | MR 0164053 | Zbl 0196.42202
[8] Topologies on closed and closed convex sets, Mathematics and its Applications, Volume 268, Kluwer Academic Publishers Group, 1993, xii+340 pages | Zbl 0792.54008
[9] Symmetric cones, the Hilbert and Thompson metrics (2012) (https://arxiv.org/abs/1207.3214)
[10] Hilbert metrics and Minkowski norms, J. Geom., Volume 83 (2005) no. 1-2, pp. 22-31 | Article | MR 2193224 | Zbl 1084.52008
[11] Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann., Volume 101 (1929) no. 1, pp. 226-237 | Article | MR 1512527 | Zbl 55.1043.01
[12] Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Annals of Mathematics Studies) Volume 97 (1981), pp. 183-213 | Zbl 0467.53035
[13] On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991) (London Mathematical Society Lecture Note Series) Volume 181, Cambridge University Press, 1993, pp. 97-119 | MR MR1238518 | Zbl 0832.52002
[14] Isometries of infinite dimensional Hilbert geometries (https://arxiv.org/abs/1405.4147)
[15] Hilbert and Thompson isometries on cones in JB-algebras (2016) (https://arxiv.org/abs/1609.03473)
[16] Isometries of polyhedral Hilbert geometries, J. Topol. Anal., Volume 3 (2011) no. 2, pp. 213-241 | Article | MR 2819195 | Zbl 1220.53090
[17] Isometries of two dimensional Hilbert geometries, Enseign. Math., Volume 61 (2015) no. 3-4, pp. 453-460 | Article | MR 3539845 | Zbl 1362.51005
[18] Thompson isometries of the space of invertible positive operators, Proc. Am. Math. Soc., Volume 137 (2009) no. 11, pp. 3849-3859 | Article | MR 2529894 | Zbl 1184.46021
[19] Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Linear Algebra, Volume 20 (2010), pp. 79-89 | MR 2596446 | Zbl 1195.46017
[20] Hilbert’s projective metric and iterated nonlinear maps, Memoirs of the American Mathematical Society, Volume 391, American Mathematical Society, 1988, 137 pages | MR MR961211 | Zbl 0666.47028
[21] Group -algebras as compact quantum metric spaces, Doc. Math., Volume 7 (2002), pp. 605-651 | MR MR2015055 | Zbl 1031.46082
[22] Isometries of the Hilbert Metric (2014) (Ph. D. Thesis)
[23] The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Camb. Philos. Soc., Volume 142 (2007) no. 3, pp. 497-507 | Zbl 1163.53048
[24] The horofunction boundary of the Hilbert geometry, Adv. Geom., Volume 8 (2008) no. 4, pp. 503-529 | Article | MR 2456635 | Zbl 1155.53335
[25] Minimum representing measures in idempotent analysis, Tropical and idempotent mathematics (Contemporary Mathematics) Volume 495, American Mathematical Society, 2009, pp. 367-382 | Article | MR 2581529 | Zbl 1179.53077
[26] The horoboundary and isometry group of Thurston’s Lipschitz metric, Handbook of Hilbert geometry. Volume IV (IRMA Lectures in Mathematics and Theoretical Physics) Volume 19, European Mathematical Society, 2014, pp. 327-353 | Article | MR 3289705 | Zbl 1311.30028
[27] The horofunction boundary and isometry group of the Hilbert geometry, Handbook of Hilbert geometry (IRMA Lectures in Mathematics and Theoretical Physics) Volume 22, European Mathematical Society, 2014, pp. 127-146 | MR 3329879
[28] Gauge-reversing maps on cones, and Hilbert and Thompson isometries, Geom. Topol., Volume 22 (2018) no. 1, pp. 55-104 | Zbl 06805076