On démontre que les plus grands sous-groupes divisibles desgroupes et d’une courbe elliptique sur un corps global de caractéristique positive sont uniquement divisibles et on décrit explicitement les -groupes modulo leurs plus grands sous-groupes divisibles. On calcule également la cohomologie motivique du modèle minimal de qui est une surface elliptique sur un corps fini.
In this paper, we show that the maximal divisible subgroup of groups and of an elliptic curve over a function field is uniquely divisible. Further those -groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of , which is an elliptic surface over a finite field.
Révisé le : 2016-10-26
Accepté le : 2017-11-13
Publié le : 2018-11-22
Classification : 11R58, 14F42, 19F27, 11G05
Mots clés : K-théorie, corps de fonctions, courbe elliptique, cohomologie motivique
@article{AIF_2018__68_5_2005_0, author = {Kondo, Satoshi and Yasuda, Seidai}, title = {First and second <span class="mathjax-formula">$K$</span>-groups of an elliptic curve over a global field of positive characteristic}, journal = {Annales de l'Institut Fourier}, pages = {2005--2067}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3202}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_5_2005_0/} }
Kondo, Satoshi; Yasuda, Seidai. First and second $K$-groups of an elliptic curve over a global field of positive characteristic. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2005-2067. doi : 10.5802/aif.3202. http://archive.numdam.org/item/AIF_2018__68_5_2005_0/
[1] Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, pp. 111-152 | MR 0200272 | Zbl 0147.20503
[2] Solution of the congruence subgroup problem for and , Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 33, pp. 59-137 | MR 0244257 | Zbl 0174.05203
[3] The Milnor ring of a global field, Algebraic -theory, II: “Classical” algebraic -theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) (Lecture Notes in Math.) Volume 342, Springer, 1973, pp. 349-446 | MR 0442061 | Zbl 0299.12013
[4] Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc, eds.), Lecture Notes in Math., Volume 225, Springer, 1971, xii+700 pages | MR 0354655 | Zbl 0218.14001
[5] Algebraic cycles and higher -theory, Adv. Math., Volume 61 (1986) no. 3, pp. 267-304 | Article | MR 852815 | Zbl 0608.14004
[6] The moving lemma for higher Chow groups, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 537-568 | MR 1269719 | Zbl 0830.14003
[7] On the rational of a curve of type over a global field of positive characteristic, J. K-Theory, Volume 14 (2014) no. 2, pp. 313-342 | Article | Zbl 1322.19002
[8] On the reciprocity law for surfaces over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 33 (1986) no. 2, pp. 283-294 | MR 866394 | Zbl 0595.14015
[9] Torsion dans le groupe de Chow de codimension deux, Duke Math. J., Volume 50 (1983) no. 3, pp. 763-801 | Article | MR 714830 | Zbl 0574.14004
[10] Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4, Lecture Notes in Math., Volume 569, Springer, 1977, iv+312pp pages | MR 0463174 | Zbl 0345.00010
[11] Lectures on -divisible groups, Lecture Notes in Math., Volume 302, Springer, 1972, v+98 pages | MR 0344261 | Zbl 0247.14010
[12] The Euler characteristic of a family of algebraic varieties, Mat. Sb. (N.S.), Volume 89(131) (1972), pp. 297-312 | MR 0327774 | Zbl 0226.14003
[13] Tate’s conjecture, algebraic cycles and rational -theory in characteristic ., -Theory, Volume 13 (1998) no. 2, pp. 109-122 | Article | Zbl 0896.19001
[14] Motivic cohomology, -theory and topological cyclic homology, Handbook of -theory, Volume 1, Springer, 2005, pp. 193-234 | MR 2181824 | Zbl 1113.14017
[15] The -theory of fields in characteristic , Invent. Math., Volume 139 (2000) no. 3, pp. 459-493 | Article | MR 1738056 | Zbl 0957.19003
[16] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., Volume 530 (2001), pp. 55-103 | Article | MR 1807268 | Zbl 1023.14003
[17] Riemann-Roch theorems for higher algebraic -theory, Adv. Math., Volume 40 (1981) no. 3, pp. 203-289 | Article | MR 624666 | Zbl 0478.14010
[18] Finite generation of -groups of a curve over a finite field (after Daniel Quillen), Algebraic -theory, Part I (Oberwolfach, 1980) (Lecture Notes in Math.) Volume 966, Springer, 1982, pp. 69-90 | MR 689367 | Zbl 0502.14004
[19] Weight filtrations via commuting automorphisms, -Theory, Volume 9 (1995) no. 2, pp. 139-172 | Article | Zbl 0826.19003
[20] Application d’Abel-Jacobi -adique et cycles algébriques, Duke Math. J., Volume 57 (1988) no. 2, pp. 579-613 | Article | MR 962521 | Zbl 0697.14005
[21] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, 167 pages | MR 0163910
[22] Revêtements étales et groupe fondamental (Grothendieck, Alexander; Raynaud, Michèle, eds.), Lecture Notes in Math., Volume 224, Springer, 1971, xxii+447 pages (Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud) | MR 0354651 | Zbl 0234.14002
[23] Homological and cohomological motives of algebraic varieties, Invent. Math., Volume 142 (2000) no. 2, pp. 319-349 | Article | Zbl 1041.14502
[24] Die Kohomologie -arithmetischer Gruppen über Funktionenkörpern, Invent. Math., Volume 42 (1977), pp. 135-175 | MR 0473102 | Zbl 0391.20036
[25] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 4, pp. 501-661 | MR 565469 | Zbl 0436.14007
[26] Finiteness, duality, and Künneth theorems in the cohomology of the de Rham-Witt complex, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Math.) Volume 1016, Springer, 1983, pp. 20-72 | MR 726420 | Zbl 0538.14013
[27] Algebraic -theory, algebraic cycles and arithmetic geometry, Handbook of -theory, Volume 1, Springer, 2005, pp. 351-428 | MR 2181827 | Zbl 1115.19003
[28] A generalization of local class field theory by using -groups. II, Proc. Japan Acad. Ser. A, Volume 54 (1978) no. 8, pp. 250-255 http://projecteuclid.org/getrecord?id=euclid.pja/1195517586 | MR 517332 | Zbl 0411.12013
[29] Unramified class field theory of arithmetical surfaces, Ann. Math., Volume 118 (1983) no. 2, pp. 241-275 | Article | MR 717824 | Zbl 0562.14011
[30] On the second rational -group of an elliptic curve over global fields of positive characteristic., Proc. Lond. Math. Soc., Volume 102 (2011) no. 6, pp. 1053-1098 | Article | Zbl 1222.19001
[31] The Riemann-Roch theorem without denominators in motivic homotopy theory, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1478-1495 | Article | Zbl 1317.19012
[32] On two higher Chow groups of schemes over a finite field., Doc. Math., Volume 20 (2015), pp. 737-752 | Zbl 1349.14080
[33] Mixed motives, Mathematical Surveys and Monographs, Volume 57, American Mathematical Society, 1998, x+515 pages | MR 1623774 | Zbl 0902.14003
[34] Techniques of localization in the theory of algebraic cycles, J. Algebr. Geom., Volume 10 (2001) no. 2, pp. 299-363 | MR 1811558 | Zbl 1077.14509
[35] Mixed motives, Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 429-521 | Zbl 1112.14020
[36] The homotopy coniveau tower, J. Topol., Volume 1 (2008) no. 1, pp. 217-267 | MR 2365658 | Zbl 1154.14005
[37] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | MR 0491722 | Zbl 0349.14004
[38] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, Volume 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné, Oxford Science Publications) | MR 1917232 | Zbl 0996.14005
[39] -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Dokl. Akad. Nauk SSSR, Volume 264 (1982) no. 3, pp. 555-559 | MR 659762 | Zbl 0525.18007
[40] The group for a field, Izv. Akad. Nauk SSSR Ser. Mat., Volume 54 (1990) no. 3, pp. 522-545 | MR 1072694 | Zbl 0711.19002
[41] Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér., Volume 9 (1976) no. 2, pp. 171-201 | MR 0460331 | Zbl 0334.14010
[42] Values of zeta functions of varieties over finite fields, Am. J. Math., Volume 108 (1986) no. 2, pp. 297-360 | Article | MR 833360 | Zbl 0611.14020
[43] Algebraic -theory and quadratic forms, Invent. Math., Volume 9 (1969/1970), pp. 318-344 | MR 0260844 | Zbl 0199.55501
[44] -homotopy theory of schemes, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 45-143 | Article | Zbl 0983.14007
[45] Algebraic cycle complexes: Basic properties, The arithmetic and geometry of algebraic cycles. Proceedings of the NATO Advanced Study Institute, Banff, Canada, June 7–19, 1998, Kluwer Academic Publishers, 2000, pp. 285-305 | Zbl 0991.14005
[46] Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ., Volume 2 (1962), pp. 1-10 | MR 0142549 | Zbl 0109.39503
[47] Homology of the general linear group over a local ring, and Milnor’s -theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 1, pp. 121-146 | MR 992981 | Zbl 0668.18011
[48] Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981) no. 4, pp. 369-401 | MR 654203 | Zbl 0519.14012
[49] Elliptic curves and wild ramification, Am. J. Math., Volume 89 (1967), pp. 1-21 | MR 0207694 | Zbl 0147.39803
[50] An elementary proof of the topological Euler characteristic formula for an elliptic surface, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 1, pp. 81-86 | MR 1059528 | Zbl 0715.14032
[51] Higher Chern classes and Steenrod operations in motivic cohomology, -Theory, Volume 31 (2004) no. 4, pp. 307-321 | Article | MR 2068875 | Zbl 1073.14029
[52] On the cohomology and -theory of the general linear groups over a finite field, Ann. Math., Volume 96 (1972), pp. 552-586 | MR 0315016 | Zbl 0249.18022
[53] Finite generation of the groups of rings of algebraic integers, Algebr. K-Theory I, Proc. Conf. Battelle Inst. 1972 (Lecture Notes in Math.) Volume 341, 1973, pp. 179-198 | Zbl 0355.18018
[54] Algebraic -theory, -homotopy and Riemann-Roch theorems, J. Topol., Volume 3 (2010) no. 2, pp. 229-264 | Article | Zbl 1202.19004
[55] On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR 1081832 | Zbl 0725.14017
[56] Groupes de Chow et -théorie de variétés sur un corps fini, Math. Ann., Volume 268 (1984) no. 3, pp. 317-345 | Article | MR 751733 | Zbl 0573.14001
[57] On the Grayson spectral sequence, Number theory, algebra, and algebraic geometry. Collected papers dedicated to the 80th birthday of Academician Igor’ Rostislavovich Shafarevich., Maik Nauka/Interperiodika, 2003, pp. 202-237 | Zbl 1084.14025
[58] Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, pp. 201-211 | MR 0422212 | Zbl 0229.12013
[59] Milnor -theory is the simplest part of algebraic -theory, -Theory, Volume 6 (1992) no. 2, pp. 177-189 | Article | MR 1187705 | Zbl 0776.19003
[60] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002) no. 7, pp. 351-355 | Article | MR 1883180 | Zbl 1057.14026
[61] Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, Volume 143, Princeton University Press, 2000, vi+254 pages | MR 1764197 | Zbl 1021.14006
[62] Algebraic -theory of rings of integers in local and global fields., Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 139-190 | Zbl 1097.19003