de Jong a conjecturé que sur une variété lisse projective connexe sur un corps algébriquement clos de caractéristique , de groupe fondamental étale trivial, tout isocristal est constant. Nous prouvons cette conjecture sous certaines hypothèses supplémentaires.
It is conjectured by de Jong that, if is a connected smooth projective variety over an algebraically closed field k of characteristic with trivial étale fundamental group, any isocrystal on is constant. We prove this conjecture under certain additional assumptions.
Révisé le : 2017-10-18
Accepté le : 2017-11-13
Publié le : 2018-11-22
Classification : 14F10, 14D20
Mots clés : isocristaux, variétés simplement connexes
@article{AIF_2018__68_5_2109_0, author = {Esnault, H\'el\`ene and Shiho, Atsushi}, title = {Convergent isocrystals on simply connected varieties}, journal = {Annales de l'Institut Fourier}, pages = {2109--2148}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3204}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_5_2109_0/} }
Esnault, Hélène; Shiho, Atsushi. Convergent isocrystals on simply connected varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2109-2148. doi : 10.5802/aif.3204. http://archive.numdam.org/item/AIF_2018__68_5_2109_0/
[1] Théorème de changement de base pour un morphisme lisse, et applications, Théorie des Topos et Cohomologie Étale des Schémas (SGA4 XVI) (Lecture Notes in Math.) Volume 305 (1973), pp. 206-249 | Zbl 0269.14011
[2] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Math., Volume 407, Springer, 1974 | Zbl 0298.14012
[3] Cohomologie rigide et cohomologie rigide à supports propres : première partie, prépublication de l’IRMAR (1996), pp. 1-91
[4] -modules arithmétiques I: Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996) no. 2, pp. 185-272 | Zbl 0886.14004
[5] -modules arithmétiques II: Descente par Frobenius, Mém. Soc. Math. Fr., Nouv. Sér., Volume 81 (2000), pp. 1-136 | Zbl 0948.14017
[6] A note on Frobenius divided modules in mixed characteristics, Bull. Soc. Math. Fr., Volume 140 (2012) no. 3, pp. 441-458 | Zbl 1277.14016
[7] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, 1978 | Zbl 0383.14010
[8] -isocrystals and -adic representations, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics) Volume 46 (1987), pp. 111-138 | Zbl 0639.14011
[9] Simply connected projective manifolds in characteristic have no nontrivial stratified bundles, Invent. Math., Volume 181 (2010) no. 3, pp. 449-465 | Zbl 1203.14029
[10] Chern classes of crystals (to appear in Trans. Am. Math. Soc.)
[11] Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975), pp. 1-31 | Zbl 0322.14009
[12] Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. Fr., Nouv. Sér., Volume 21 (1985), pp. 1-87 | Zbl 0615.14011
[13] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 | Zbl 0153.22301
[14] Crystals and de Rham cohomology of schemes, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies Pure Math.) Volume 3 (1968), pp. 306-358 | Zbl 0215.37102
[15] Représentations linéaires et compactifications profinies des groupes discrets, Manuscr. Math., Volume 2 (1970), pp. 375-396 | Zbl 0239.20065
[16] Revêtements étales et groupe fondamental, Lecture Notes in Math., Volume 224, Springer, 1971 | Zbl 0234.14002
[17] The geometry of moduli spaces of sheaves, Aspects of Mathematics, Volume E31, Vieweg, 1997 | Zbl 0872.14002
[18] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | Zbl 0436.14007
[19] Semistable sheaves in mixed characteristics, Duke Math. J., Volume 124 (2004), pp. 571-586
[20] Semistable sheaves in positive characteristic, Ann. Math., Volume 159 (2004), pp. 251-276 | Zbl 1080.14014
[21] On the -fundamental group scheme, Ann. Inst. Fourier, Volume 61 (2011), pp. 2077-2119 | Zbl 1247.14019
[22] Semistable modules over Lie algebroids in positive characteristic, Doc. Math., Volume 19 (2014), pp. 509-540 | Zbl 1330.14017
[23] Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math., Volume 199 (2015), pp. 889-920 | Zbl 1348.14048
[24] Generic positivity and foliations in positive characteristic, Adv. Math., Volume 277 (2015), pp. 1-23 | Zbl 1348.14070
[25] Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | Zbl 0307.14007
[26] Rigid cohomology, Cambridge Tracts in Mathematics, Volume 172, Cambridge University Press, 2007 | Zbl 1131.14001
[27] On isomorphic matrix representations of infinite groups, Mat. Sb. N.S., Volume 8(50) (1940), pp. 405-422 | Zbl 0025.00804
[28] Homogeneous bundles in characteristic , Algebraic geometry—open problems (Ravello, 1982) (Lecture Notes in Math.) Volume 997 (1983), pp. 315-320 | Zbl 0532.14007
[29] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Volume 5, Oxford University Press, 1970 | Zbl 0223.14022
[30] Cohomology of the infinitesimal site, Ann. Sci. Éc. Norm. Supér., Volume 8 (1975), pp. 295-318 | Zbl 0337.14018
[31] -isocrystals and de Rham cohomology II: Convergent isocrystals, Duke Math. J., Volume 51 (1984), pp. 765-850 | Zbl 0584.14008
[32] The convergent topos in characteristic , The Grothendieck Festschrift (Progress in Math.) Volume 88 (1990), pp. 133-162 | Zbl 0728.14020
[33] Nonabelian Hodge theory in characteristic , Publ. Math., Inst. Hautes Étud. Sci., Volume 106 (2007), pp. 1-138 | Zbl 1140.14007
[34] Some remarks on the instability flag, Tohoku Math. J., Volume 36 (1984), pp. 269-291 | Zbl 0567.14027
[35] Fundamental group schemes for stratified sheaves, J. Algebra, Volume 317 (2007) no. 2, pp. 691-713 | Zbl 1130.14032
[36] A note on convergent isocrystals on simply connected varieties (2014) (https://arxiv.org/abs/1411.0456)