Dans cet article, nous montrons que est presque isométrique à , et ce de façon naturelle, lorsque est lacunaire avec une raison grande. Par ailleurs, notre approche permet aussi d’étudier les mesures de Carleson pour les espaces Müntz lorsque est lacunaire. Nous donnons des conditions nécessaires et des conditions suffisantes qui permettent d’assurer qu’un plongement de Carleson est borné ou compact. Dans le cadre hilbertien, nous étudions aussi l’appartenance de ce plongement aux classes de Schatten. Nous obtenons des caractérisations complètes lorsque se comporte comme une suite géométrique.
In this paper we prove that is almost isometric to in the canonical way when is lacunary with a large ratio. On the other hand, our approach can be used to study also the Carleson measures for Müntz spaces when is lacunary. We give some necessary and some sufficient conditions ensuring that a Carleson embedding is bounded or compact. In the hilbertian case, the membership to Schatten classes is also studied. When behaves like a geometric sequence the results are sharp, and we get some characterizations.
Révisé le : 2017-07-21
Accepté le : 2017-11-06
Publié le : 2018-11-22
Classification : 30B10, 47B10, 47B38
Mots clés : Espaces de Müntz, plongements de Carleson, suites lacunaires, classes de Schatten
@article{AIF_2018__68_5_2215_0, author = {Gaillard, Lo\"\i c and Lef\`evre, Pascal}, title = {Lacunary M\"untz spaces: isomorphisms and Carleson embeddings}, journal = {Annales de l'Institut Fourier}, pages = {2215--2251}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3207}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_5_2215_0/} }
Gaillard, Loïc; Lefèvre, Pascal. Lacunary Müntz spaces: isomorphisms and Carleson embeddings. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2215-2251. doi : 10.5802/aif.3207. http://archive.numdam.org/item/AIF_2018__68_5_2215_0/
[1] Essential norms of Volterra and Cesàro operators on Müntz Spaces, Colloq. Math., Volume 151 (2018) no. 2, pp. 157-169 | Zbl 06857948
[2] Essential norms of weighted composition operators on Müntz Spaces, Serdica Math. J., Volume 40 (2014) no. 3, pp. 241-260 | MR MR3288126
[3] Polynomials and polynomial inequalities, Springer, 1995 | MR MR1367960 | Zbl 0840.26002
[4] Embeddings theorems for Müntz Spaces, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2291-2311 | MR MR2976312 | Zbl 1255.46013
[5] Absolutely summing operators, Cambridge Studies in Advanced Mathematics, Volume 43, Cambridge University Press, 1995, xv+474 pages | Zbl 1139.47021
[6] Unconditionality in spaces of smooth functions, Arch. Math., Volume 92 (2009) no. 6, pp. 476-484 | MR MR2506948 | Zbl 1189.46008
[7] Geometry of Müntz spaces and related questions, Lecture Notes in Math., Volume 1870, Springer, 2005, xiv+172 pages | MR MR2190706 | Zbl 1094.46003
[8] Lacunary power sequences in the spaces and , Am. Math. Soc., Transl., Volume 72 (1966), pp. 9-21 | MR MR0190703 | Zbl 0187.37505
[9] On the geometry of Müntz spaces, J. Funct. Spaces (2015), 787291, 7 pages (Art. ID 787291, 7 p.) | MR MR3361114 | Zbl 1332.46023
[10] Embeddings of Müntz spaces: the Hilbertian Case, Proc. Am. Math. Soc., Volume 141 (2013) no. 6, pp. 2009-2023 | MR MR3034427 | Zbl 1282.46026
[11] A remark about Müntz spaces (http://page.mi.fu-berlin.de/werner/preprints/muentz.pdf)
[12] Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, Volume 25, Cambridge University Press, 1991, xiii+382 pages | Zbl 0724.46012