Nous poursuivons l’étude d’un contrôle épars d’un opérateur singulier. Plus précisément nous expliquons comment on peut conserver certaines propriétés de l’opérateur initial à travers un tel contrôle et décrivons quelques applications : bornitude de l’adjoint de la transformée de Riesz et du projecteur de Leray. De plus, nous nous intéresserons à donner un regard nouveau sur les dominations éparses à travers les oscillations et les fonctions carrées localisées. Aussi, nous dévoilerons une connexion entre les bons intervalles de la décomposition éparse et une décomposition atomique.
We pursue the study of a sparse control for a singular operator. More precisely, we describe how one can track some properties of the initial operator, through such a control and describe also some applications: boundedness of the adjoint of a Riesz transform and of the Leray projector. Moreover, we will be interested in giving a new insight on the sparse domination through the oscillations and the localized square functions. Also, we will reveal a connection between the good intervals of the sparse domination and the atomic decomposition for a function in a Hardy space.
Révisé le : 2017-07-24
Accepté le : 2017-11-06
Publié le : 2018-11-22
Classification : 42B15, 42B25, 42B35
Mots clés : Opérateurs épars, poids, espaces de Hardy et BMO
@article{AIF_2018__68_6_2329_0, author = {Benea, Cristina and Bernicot, Fr\'ed\'eric}, title = {Conservation de certaines propri\'et\'es \`a travers un contr\^ole \'epars d'un op\'erateur et applications au projecteur de Leray--Hopf}, journal = {Annales de l'Institut Fourier}, pages = {2329--2379}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3211}, language = {fr}, url = {archive.numdam.org/item/AIF_2018__68_6_2329_0/} }
Benea, Cristina; Bernicot, Frédéric. Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2329-2379. doi : 10.5802/aif.3211. http://archive.numdam.org/item/AIF_2018__68_6_2329_0/
[1] On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on and related estimates, Mem. Am. Math. Soc., Volume 186 (2007) no. 871, xviii+75 pages | Article | MR 2292385 | Zbl 1221.42022
[2] On the Calderón-Zygmund lemma for Sobolev functions (2008) (http://arxiv.org/abs/0810.5029)
[3] Carleson measures, trees, extrapolation, and theorems, Publ. Mat., Volume 46 (2002) no. 2, pp. 257-325 | Article | MR 1934198 | Zbl 1027.42009
[4] Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal., Volume 18 (2008) no. 1, pp. 192-248 | Article | MR 2365673 | Zbl 1217.42043
[5] Hardy spaces and divergence operators on strongly Lipschitz domains of , J. Funct. Anal., Volume 201 (2003) no. 1, pp. 148-184 | Article | MR 1986158 | Zbl 1033.42019
[6] Stability of weighted Laplace-Beltrami operators under -perturbation of the Riemannian metric, J. Anal. Math., Volume 68 (1996), pp. 253-276 | Article | MR 1403258 | Zbl 0868.35025
[7] Sparse bilinear forms for Bochner Riesz multipliers and applications, Trans. Lond. Math. Soc., Volume 4 (2017) no. 1, pp. 110-128 | MR 3653057 | Zbl 06873422
[8] Multiple vector-valued inequalities via the helicoidal method, Anal. PDE, Volume 9 (2016) no. 8, pp. 1931-1988 | Article | MR 3599522 | Zbl 1361.42005
[9] Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Volume 9 (2016) no. 5, pp. 1079-1113 | Article | MR 3531367 | Zbl 1344.42009
[10] A note on Calderón-Zygmund singular integral convolution operators, Bull. Am. Math. Soc., Volume 16 (1987) no. 2, pp. 271-273 | Article | MR 876962 | Zbl 0617.42010
[11] Interpolations by bounded analytic functions and the corona problem, Ann. Math., Volume 76 (1962), pp. 547-559 | Article | MR 0141789 | Zbl 0112.29702
[12] Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge Studies in Advanced Mathematics, Volume 48, Cambridge University Press, 1997, xix+314 pages | Zbl 0916.42023
[13] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284 | Article | MR 3668591 | Zbl 06740746
[14] Riesz transform and perturbation, J. Geom. Anal., Volume 17 (2007) no. 2, pp. 213-226 | Article | MR 2320162 | Zbl 1122.58014
[15] Sharp weighted estimates for classical operators, Adv. Math., Volume 229 (2012) no. 1, pp. 408-441 | Article | MR 2854179 | Zbl 1236.42010
[16] Domination of multilinear singular integrals by positive sparse forms (2016) (http://arxiv.org/abs/1603.05317, to appear in J. Lond. Math. Soc.)
[17] An elementary proof of the Bound, Isr. J. Math., Volume 217 (2017), pp. 181-195 | Zbl 1368.42016
[18] The molecular characterization of weighted Hardy spaces, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 442-460 | Article | MR 1883413 | Zbl 0998.42013
[19] A wavelet characterization for the dual of weighted Hardy spaces, Proc. Am. Math. Soc., Volume 137 (2009) no. 12, pp. 4219-4225 | Article | MR 2538583 | Zbl 1181.42020
[20] boundedness of Riesz transforms, J. Math. Anal. Appl., Volume 301 (2005) no. 2, pp. 394-400 | Article | MR 2105680 | Zbl 1083.42012
[21] A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc., Volume 42 (2010) no. 5, pp. 843-856 | Zbl 1203.42023
[22] Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math., Volume 226 (2011) no. 5, pp. 3912-3926 | Article | MR 2770437 | Zbl 1226.42010
[23] On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., Volume 121 (2013), pp. 141-161 | Zbl 1285.42015
[24] A simple proof of the conjecture, Int. Math. Res. Not., Volume 14 (2013), pp. 3159-3170 | MR 3085756 | Zbl 1318.42018
[25] On pointwise estimates involving sparse operators, New York J. Math., Volume 22 (2016), pp. 341-349 http://nyjm.albany.edu:8000/j/2016/22_341.html | MR 3484688 | Zbl 1347.42030
[26] Intuitive dyadic calculus the basics (2015) (http://arxiv.org/abs/1508.05639, to appear in Expo. Math.)
[27] Ondelettes et opérateurs. II, Actualités Mathématiques., Hermann, 1990, p. i-xii and 217–384 (Opérateurs de Calderón-Zygmund.) | MR 1085488 | Zbl 0745.42011
[28] Classical and Multilinear Harmonic Analysis, Cambridge Studies in Advanced Mathematics, Volume 137, Cambridge University Press, 2013, xviii+370 pages | Zbl 1281.42002
[29] estimates for the biest. I. The Walsh case, Math. Ann., Volume 329 (2004) no. 3, pp. 401-426 | Article | MR 2127984 | Zbl 1073.42009
[30] Iterations of Hardy-Littlewood maximal functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 272-276 | Article | MR 902540 | Zbl 0653.42019
[31] Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Volume 43, Princeton University Press, 1993, xiv+695 pages (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR 1232192 | Zbl 0821.42001