Pour un groupe réductif et un automorphisme d’ordre fini de type Cartan de nous construisons une variété propre paramétrant les systèmes propres de Hecke automorphes cuspidaux -invariants de . En particulier, pour , on prouve que chaque système propre de Hecke cuspidale autoduale de pente finie peut être déformé dans une famille -adique de sytèmes propres de Hecke cuspidaux autoduaux contenant un sous-ensemble Zariski-dense de points classiques.
For a reductive group and a finite order Cartan-type automorphism of , we construct an eigenvariety parameterizing -invariant cuspidal Hecke eigensystems of . In particular, for , we prove, any self-dual cuspidal Hecke eigensystem can be deformed in a p-adic family of self-dual cuspidal Hecke eigensystems containing a Zariski dense subset of classical points.
Révisé le : 2017-09-07
Accepté le : 2017-12-12
Publié le : 2018-11-22
Classification : 11F33, 11F55, 11F75, 11F85
Mots clés : variété propre, forme automorphe p-adique, représentation autoduale
@article{AIF_2018__68_6_2381_0, author = {Xiang, Zhengyu}, title = {Twisted eigenvarieties and self-dual representations}, journal = {Annales de l'Institut Fourier}, pages = {2381--2444}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3212}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_6_2381_0/} }
Xiang, Zhengyu. Twisted eigenvarieties and self-dual representations. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2381-2444. doi : 10.5802/aif.3212. http://archive.numdam.org/item/AIF_2018__68_6_2381_0/
[1] The -Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (2003) no. 2, pp. 257-290 | Zbl 0692.22004
[2] Simple algebras, Base change and the advanced theory of the trace formula, Annals of Mathematics Studies, Volume 120, Princeton University Press, 1989, xiii+230 pages | Zbl 0682.10022
[3] Rigidity of -adic cohomology classes of congruence subgroups of , Proc. Lond. Math. Soc., Volume 96 (2008) no. 2, pp. 367-388 | Zbl 1206.11067
[4] -adic deformation of arithmetic cohomology (2008) (Preprint)
[5] Cuspidal representations of reductive groups (2008) (https://arxiv.org/abs/0810.0787)
[6] On the cuspidal cohomology of S-arithmetic subgroups of reductive groups over number fields, Compos. Math., Volume 102 (1996) no. 1, pp. 1-40 | Zbl 0853.11044
[7] Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, Volume 67, American Mathematical Society, 1999, xvii+260 pages | Zbl 0980.22015
[8] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series) Volume 320, Cambridge University Press, 2007, pp. 59-120 | Zbl 1230.11054
[9] Motifs et formes automorphes: Applications du principe de fonctorialité, Automorphic Forms, Shimura Varieties, and -functions. Volume I (Perspectives in Mathematics) Volume 10, Academic Press, 1990, pp. 77-159 | Zbl 0705.11029
[10] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | Zbl 0918.11026
[11] Harmonic analysis in weighted -spaces, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998) no. 2, pp. 181-279 | Zbl 0938.11026
[12] A decomposition of spaces of automorphic forms and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 331 (1998) no. 4, pp. 765-790 | Zbl 0924.11042
[13] Representations of algebraic groups, Mathematical Surveys and Monographs, Volume 107, American Mathematical Society, 2003 | Zbl 1034.20041
[14] Algebraic groups, Lie Groups, and their arithmetic subgroups (2010) (available at www.jmilne.org/math/)
[15] Endomorphismes completement continus des espaces de Banach -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 12 (1962), pp. 62-85 | Zbl 0104.33601
[16] Unitary representations of with non-trivial -cohomology, Invent. Math., Volume 71 (1983) no. 3, pp. 443-465 | Zbl 0505.22015
[17] Reductive groups, Automorphic forms, representations and -functions (Proceedings of Symposia in Pure Mathematics) Volume 33, American Mathematical Society, 1979, pp. 3-29 | Zbl 0416.20034
[18] Eigenvarieties for reductive groups, Ann. Math., Volume 174 (2011) no. 3, pp. 1685-1784 | Zbl 1285.11081
[19] Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90 | Zbl 0692.22008
[20] A construction of the full eigenvariety of a reductive group, J. Number Theory, Volume 132 (2012) no. 5, pp. 938-952 | Zbl 1272.11073
[21] Twisted Lefschetz number formula and p-adic trace formula (2016) (to appear in Trans. Am. Math. Soc.)