Relativistic theory of angular correlations in successive two-body decays of unstable particles
Annales de l'I.H.P. Physique théorique, Tome 2 (1965) no. 2, pp. 87-104.
@article{AIHPA_1965__2_2_87_0,
     author = {Henry, Claude and de Rafael, Eduardo},
     title = {Relativistic theory of angular correlations in successive two-body decays of unstable particles},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {87--104},
     publisher = {Gauthier-Villars},
     volume = {2},
     number = {2},
     year = {1965},
     mrnumber = {177698},
     language = {en},
     url = {archive.numdam.org/item/AIHPA_1965__2_2_87_0/}
}
Henry, Claude; de Rafael, Eduardo. Relativistic theory of angular correlations in successive two-body decays of unstable particles. Annales de l'I.H.P. Physique théorique, Tome 2 (1965) no. 2, pp. 87-104. http://archive.numdam.org/item/AIHPA_1965__2_2_87_0/

[1] We give a list of recent works on these subjects, where references to the earlier literature can be found : N. Byers and S. Fenster, Phys. Rev. Letters, t. 11, 1963, p. 52;

M. Ademollo and R. Gato, Phys. Rev., t. 133, 1964, p. B 531;

M. Ademollo, R. Gato and G. Preparata, Phys. Rev. Letters, t. 12, 1964, p. 462;

K. Gottfried and J.D. Jackson, Nuovo Cimento, t. 33, 1964, p. 309 ; Phys. Rev. Letters, t. 8, 1964, p. 144;

J.D. Jackson and H. Pilkuhn, Nuovo Cimento, t. 33, 1964, p. 906 and errata.

J.D. Jackson, CERN preprint.

For a survey concerning the non-relativistic treatment of angular correlations in nuclear physics, seeS. Devons and L.J.B. Goldfarb, Handbuch der Physik, t. 42, 1957, p. 362.

[2] E.P. Wigner, Ann. Math., t. 40, 1939, p. 149. See also A.S. Wightman, L'invariance dans la mécanique quantique relativiste, Les Houches, 1960, p. 160-226.

H. Joos, Forstchr. Physik, t. 10, 1962, p. 65. | Zbl 0131.44002

[3] See e. g., U. Fano, Rev. Modern Phys., t. 29, 1957, p. 74. | MR 85885 | Zbl 0078.19506

[4] L. Michel, Suppl. Nuovo Cimento, t. 14, 1959, p. 95. | MR 111480 | Zbl 0090.19701

[5] See e. g., H. Bacry, Thèse, Université de Marseille, 1963. | Zbl 0459.00009

[6] If Mνρ denotes the total angular momentum tensor operator, the polarization operator is Wμ = 1/2 ∈μνρσMνρPσ. Its mathematical significance and physical implications are discussed in L. Michel, Loc. cit., ref [4].

[8] See e. g., H. Joos, Loc. cit., ref [2].

[9] See E.P. Wigner, Loc. cit., ref [2].

[10] See e. g., U. Fano and G. Racah, Irreducible Tensorial Sets, Academic Press Inc., New York, 1959. | MR 99846

[11] See L. Michel, Loc. cit., ref. [4].

[14] See e. g., N. Byers and S. Fenster, Loc. cit., ref. [1].

[15] E. De Rafael, Nuovo Cimento, t. 33, 1964, p. 237.

[16] For a recent survey concerning Strange-Particle Resonant States and references to the literature, see R.H. Dalitz, Ann. Rev. Nuc. Sci., t. 13, 1963, p. 339. | Zbl 0121.44304

[17] N. Gelfand Et Al., Phys. Rev. Letters, t. 12, 1964, p. 567;

G. Benson Et Al., Phys. Rev. Letters, t. 12, 1964, p. 600;

M. Aderholz Et Al., Phys. Rev. Letters, t. 10, 1964, p. 240.

[18] Y.Y. Lee Et Al., Phys. Rev. Letters, t. 12, 1964, p. 342.

[19] E. De Rafael, Physics Letters, t. 11, 1964, p. 260.

[20] E.P. Wigner, Group Theory and its application to the quantum mechanics of atomic spectra, Academic Press, New York, 1959. | MR 106711 | Zbl 0085.37905