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On some classical space-time groups
and their « SU6 generalizations »

H. BACRY

Cem, Geneva.

Ann. Inst. Henri Poincaré,
Vol. II, no 4, 1965,

Section A :

Physique théorique.

ABSTRACT. - The Lorentz group, Poincaré group, de Sitter groups are

defined as subgroups of the conformal group. The four-dimensional

representation of the conformal group is investigated with the aid of the
y-Dirac algebra. This leads to a new interpretation of the y5 operator as
the generator of the scale transformation of the Minkowski space. The

usual currents + for massless particles are shown to belong
to the adjoint representation of the Poincaré group (it is not the case for
the ~y~(l "" components). Natural « SU6-generalizations » of all

these groups are readily derived and some of their properties are discussed.

RESUME. - Les groupes de Lorentz, Poincaré et de Sitter sont définis
comme sous-groupes du groupe conforme. La representation a 4 dimensions
de ce groupe est étudiée en terme des matrices y de Dirac. La matrice y5 est

alors le generateur infinitesimal des dilatations dans 1’espace de Minkowski.
Les courants usuels 03C8 03B3 (1 + pour les particules de masse zero appar-
tiennent a la representation adjointe du groupe de Poincaré (ce qui n’est

pas le cas des composantes § ~5)~). Les généralisations « naturelles »
.de ces groupes pour l’invariance SU6 sont établies et quelques propriétés
sont discutées.

Finding SU6 generalizations ~E of the Poincaré group ~ is not so easy,
due to the fact that J is not a semi-simple group (i. e., it possesses an invariant
Abelian subgroup, namely the translation group of space-time). In order
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to avoid such a difficulty, it is interesting to connect the group J to a simple
group G following a given rule :

Then, one enlarges the group G to a group GE such that SUg is contained
in GE like the rotation group SU2 is contained in G. One applies now the
inverse rule to (R) in order to get a solution of our problem :

The two following rules (R) can be used:

is the « limit)) of G; the group G can be chosen as one of the two
de Sitter groups 8 + and ~-, both built on Lie algebra C2 (Cartan’s notation) ;

(R2) :r is a subgroup of G ; the natural choice for G is the conformal group,
the Lie algebra of which is A3 (Cartan’s notation).

Such considerations led us to examine the connections between the
conformal, de Sitter, Poincaré, Lorentz, and rotation groups.
The conformal group is usually defined as the largest group of space-

time transformations which leaves invariant the Maxwell equations [1].
This group is generated by 15 operators, 11 of which correspond to linear
transformations of the Minkowski space (namely, the six the four P~
and the scale transformation of space-time S) and the last four correspond-
ing to the non-linear transformations (« accelerations »)

where x2 = x&#x3E;x&#x3E;.
This group is known to be simple ; its Lie algebra is Ag in Cartan’s nota-

tion.

Starting from another point of view, we define in Section I the conformal
group as a generalized Lorentz group and show how it contains as subgroups
the Poincaré group (i. e., the inhomogeneous Lorentz group) and the two
de Sitter groups (i. e., the groups of space-time transformations when the
Minkowski space is replaced by a constant curvature space). A general
framework for the investigation of the pseudo-orthogonal and pseudo-
unitary groups is given.

In Section II, we examine the conformal group in a locally equivalent
definition. A four-dimensional representation is given explicitly, using
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the y Dirac algebra. Some consequences concerning the Poincaré group
are derived, namely :

i) the Y5 operator can be identified with the operator S of scale transfor-
mations ;

ii) given a Dirac spinor 03C8 the current + 03B35)03C8 is shown to belong
to the adjoint representation of the Poincaré group together with the

components.

In generalizing the conformal group in order to replace the rotation
group SU2 by the SUa group which has been proposed by several authors [2],
natural generalizations of the de Sitter, Poincaré and Lorentz groups are
derived. Some remarks concerning such groups are discussed. All ques-
tions connected with the SUg group are investigated in Section III.

I. Let us consider a real (n + m) - dimensional vector space M(n, m)
where a pseudoeuclidean metric g is defined with the signature : n minus signs
and m plus signs.
We define the two following groups :

- L(n, m) : the connected [3] group of (n + m) X (n + m) unimodular
matrices which preserves the metric g, i. e., the quadratic form :

- P(n, m) : the corresponding inhomogeneous (connected) group, i. e.,

the group of transformations (A, a) :

where A is an element of L(n, m) and a, x, x’ vectors of M(n, m).
To each pair of vectors a and b of M(n, m) corresponds a dyadic linear

operator written a (x) b ; such a dyad [4] acts on a given vector x as follows :

where (b, x) denotes the scalar product of the two vectors b and x.
Conversely, it can be easily proved that every linear operator on M may

be written in the form of a sum of such dyads. More precisely, given a
basis e« of the vector space M, every linear operator A may be put in the
form
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The following definitions will be useful:

a) given a non-singular linear operator A, there exists a linear associate

operator A such that

for each pair of vectors x, y.
Note that :

b) A linear operator A will be called pseudosymmetric if :

and pseudoantisymmetric if :

Note that they are called, respectively, symmetric and antisymmetric
if g is definite (n or m equals zero). For instance, a Q a is pseudosymme-
tric and

is pseudoantisymmetric.
c) A non-singular linear operator A will be said pseudo-orthogonal if:

or, equivalently, if:

The group of all these pseudo-orthogonal matrices is sometimes denoted
by 0(n, m). It contains as a subgroup the unimodular pseudo-orthogonal
group SO(n, m), the part which is connected to the unit transformation
is a group denoted L(n, m) c SO(n, m).
Now, every operator A of L(n, m) may be put in the form

since L(n, m) is connected. Moreover, according to Eq. (11), A has to be
pseudoantisymmetric :
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Following Eq. (5) and (9), the generators of L(n, m) can be written as

and from Eq. (4) and (9), we derive readily the well-known commutation
rules :

where

It is perhaps important to note that the commutation rules do not depend
on the kind of the basis : the e«’s are not necessarily orthogonal or normalized.
The usual choice consists in putting :

such that basic vectors are either spacelike (gtm  0) or timelike &#x3E; 0).
It will appear sometimes interesting to choose a basis with some isotropic
vectors (ga« = 0).
Our next task consists in proving the following theorem.

THEOREM. - The subgroup of L(n, m) which leaves invariant a given
vector f is [S] :

In view of physical applications, we will give the proof of the above
theorem in the special case where n = 4 and m = 2 (There is no difficulty
in giving a general proof for any values of n and m). The group L(4,2) is
the connected part of the conformal group. The three corresponding
groups mentioned in (18) are, respectively, the two de Sitter groups L(3,2)
and L(4, 1), and the Poincaré group P(3,I). Note that the above theorem

is well-known in the case where L(n, m) = L(3,1) is the usual Lorentz group.
The same theorem can be stated in another way : the little groups of P(n, m)
are L(n - 1, m), L(n, m - 1 ) and P(n - 1, m - 1 ).

Let e-i, eo, eb e2, e3, e4 be a « Lorentz » basis for the M(4,2) space, i. e.,
a basis such that 

--

and gcxa = 0 for « # P.
ANN. INST. POINCARÉ, A-II-4 22
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(Vectors eo, ei, es and e~ form the usual Lorentz basis for Minkowski

space.)
Instead of a « Lorentz » basis, we choose the following one : eo, ei, e~, e3,
I and I’, where

These vectors satisfy the following relations :

According to Eq. (14), the generators of L(4, 2) are

where ~. and v run from 0 to 3.
Using the property:

already used in order to get (15), we find the following commutation rules
of the conformal group L(4,2) :
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The and P~’s are the usual generators of the Poincare group P(3,1),
the A~’s are the generators of the transformations (I) and S is the scale
transformation of the space-time.
We are interested in finding the subgroup of L(4,2) which leaves invariant

a given vector f Such a subgroup is generated by the operators ia A b
which possess the property :

Without loss of generality, we can choose as the vector f the following
form

where fi is some parameter. If

Let us write how the generators act on f :

According to (31), the subgroup of L(4,2) which leaves invariant the vector f
is generated by the M,v’s and the XTI’s defined as :

and the commutation rules of this subgroup are :

One can easily verify that for P = 1, one gets L(3,2) as a subgroup and for
~ = - 1, one gets L(4,1). For p = 0, Eq. (36) and (37. c) show that one
gets the Poincaré group where the X~’s are the usual translation operators.
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Eq. (37 a, b, c) are usually interpreted as follows : the XIL’S are the genera-
tors of space-time « translations » when the space-time is supposed curved
with a constant curvature 0. For a flat space-time 03B2 - 0 and one

gets the Poincare group as a limit.

One can readily generalize the above proof in order to state the above
theorem. The results can be summarized in the following chain :

Chain 1 :

where an arrow means « contains as a subgroup ».
The « physical » part of this chain is :

Chain 2 :

The last column of this chain contains the three little groups of the Poin-

care group.

II. In view of a « SU6-generalization » of the groups mentioned in the
chain 2, we have to build an analogous chain where the rotation group SOs
is replaced by its covering group [6], namely the SU~ group; in that case,
the Lorentz group is also replaced by its covering group, the group of uni-
modular complex 2 X 2 matrices SL(2,C). The generators of this group
are usually written in terms of the elements of the y Dirac algebra : given
four matrices y~ obeying
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the generators of SL(2,C) are the six matrices :

The are 4 X 4 matrices ; then we have a four-dimensional repre-
sentation of the SL(2,C) group; this representation is not irreductible,
in fact it is the direct sum of the two irreductible representations

Now, given a spinor ~, the product ~ is invariant under SL(2,C) ; this
proves that SL(2,C) is a subgroup of the group which leaves invariant
such a quadratic form:

This new group is very similar to U4 (the group of 4 x 4 unitary matri-
ces). Because of the signature of the « scalar product)} (40), we shall call
it the U(2,2) group. More generally, U(n, m) will denote the group of
all (n + m) X (n + m) matrices preserving the following scalar product [7]:

The group SL(2,C) is then a subgroup of the group SU(2,2). This

last group has fifteen parameters like the group SU 4 and like the conformal

group. In fact, it is locally isomorphic [8] to the conformal group as can
be seen from the following isomorphism :
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where

Using the properties (38) and (39), wç get

from which we verify that the matrices (42) satisfy the commutation rules
of the conformal group (30).
The spinors 03C8 and are not transformed in the same way under the

SU(2,2) group. The two transformations correspond to two non-equiva-
lent irreducible representations; we denote them, respectively, 4 and 4.

The multiplication rule :

is the same as in the SU, group (except, of course, the meaning of the bar).
The representation 1 in Eq. (47) contains the « scalar product » ~; the

fifteen components of the representation 15 are the :

The adjoint representation 15 contains, of course, the adjoint represen-
tation 10 of the de Sitter groups, and the adjoint representation of the
Poincare group. For these, the rule is the following :

When p becomes zero, the irreductible representations 5 and 10 become
reducible, but not completely reducible; consequently Eq. (48) can be consi-
dered as characterizing the three subgroups (de Sitter and Poincaré), but
where 5 and 10 denote non completely reducible representations [9].
According to Eq. (42) the current components which belong to the adjoint

representation of the Poincaré group are the + and the 
alone. In resume, we have :
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TABLE I

It will be useful to give an explicit form of the representation 4 of the
SU(2,2) group; such a representation can be obtained by choosing the
following definition of the y~s:
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We are now able to give new definitions for the de Sitter and Poincare
groups : they are the subgroups of SU(2,2) which leave invariant the sym-
plectic form:

where P has the same meaning as earlier.

If P = 1 (lst de Sitter group), the invariant form is or c~c~~ ;
If P = - 1 (2nd de Sitter group), it is or ~5~ ;
If (3 = 0 (Poincaré group), it is ~1 + Y5)~2~ or ~1 + ys)~" ;

(~~ denotes the charge conjugate spinor).

The three quantities ~, and ~(1 + y5)c~~ are invariant under the
Lorentz group, since the Lorentz group is, in every case, a subgroup. Some

supplementary details are given in Appendix B.
From the above discussion, we can consider the Poincaré group either

as a « symplectic » group with the non-regular metric h [Eq. (51)] with
(3 = 0, or as the inhomogeneous SL(2,C) group. B

These two definitions lead to different SUg generalizations.

III. We are now able to try to find the SU6 generalizations of the confor-
mal, de Sitter and Poincaré groups. The following chain repeats some
important results of Sections I and II:

Here, a single arrow has the same meaning as above, namely A - B
means « A contains B as a subgroup » and A =&#x3E; B means « A is a covering
group of B ».

We are led, in a natural way, to the following generalization [10] of the
chain (52. b) :
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But, according to the remark at the end of Section II, it is also possible
to consider the « symplectic » parts of the SU(6,6) group as the generalized
de Sitter groups ; then, taking the limit, we would be led to another genera-
lized Poincaré group. As will be shown, such a generalization does not
seem very attractive from a physical point of view.

In the two cases, we are led to an investigation of the SU(6,6) group.
In order to get the generators of this group, we use the following property :

U(6,6) possesses 144 generators as U(12,0). They are built on the same
Lie algebra (An in the Cartan notation).
According to Eq. (42) and (54), each generator of the U(6,6) group can

be put in the form of a direct product :

where r is one of the 16 matrices of the y Dirac algebra, and X one of
the 9 generators of the group Ua (16 X 9 = 144).
The SU(6,6) group has 143 generators since we have to discard the

generator 101. Therefore the generators of SU(6,6) can be written
in the following 12-dimensional representation in analogy with (50) :

35 generators of SUa

35 generators of « pure Lorentz transformations »

36 « translation» operators
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36 « inversion )) operators (55 d)

. 

1 scale transformation

(55 . e)

where Cl runs from 1 to 35, and ACt are the traceless Hermitian 6 X 6 matrices
generating the SU, group. According to these definitions, it is very easy
to derive the commutation relations of the group. They are [11] :
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The and d03B103B203B3 are defined from the matrices as follows :

as made by Gell-Mann for the SUg group [12]. The commutation rules (56)
can be written in another form, using the indices of Lorentz and SUs groups
(see Appendix C). They can also be generalized to the SU(n, n) group [13].
The irreducible representations of SL(6,C) are defined in a recent

paper [14] ; they are labelled by two numbers D(n, m) where n and m denote.
dimensions [15] of two irreducible representations of SU6. The
12-dimensional representation of Eqs. (55. a) and (55. b) is reducible, namely
D(6,1) @ D(1,6). The P,’s and are components of an irreducible

tensor D(6,6); in fact, according to (55. c) they transform D(6,1) into D(1,6)
following the rule :

On the contrary, the A,’s and transform as the representation
D(6,6). The operator S is a scalar under SL(6,C). The following Table
is readily obtained In Table 2, Àa denotes a generator of U3.

Let us compare now Tables I et II.

i) Under the SL(2,C) group, the representations 4 and 4 are equivalent;
this is no longer the case in SL(6,C) where D(6,1) # D(1,6) is not equi-
valent to D(6,1) @ D(1,6) .
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ii) Under SL(2,C) the vector currents + and ~y~(l 2014 
belong to the same representation under SL(6,C) they belong to two
different irreducible representations, namely D(6,6) and D(6, 6).

iii) Inhomogeneous SL(2,C) was shown to be a « symplectic » part of
SU(2,2). On the contrary, inhomogeneous SL(6,C) is not a « symplectic »
part of SU(6,6). In fact, for the symplectic groups [17] Sp12, the adjoint
representation is 78-dimensional (instead of 106). We will investigate such
groups later.

TABLE II

The following question arises : is it possible to consider the « enlarged
Poincaré group » inh SL(6,C) as a limit of an « enlarged de Sitter group )) p
Following considerations of Section I, we are led to see if the operators :

and

can be adjoined to the SL(6,C) generators in order to get a Lie algebra.
The answer is « no ». This can be easily seen in calculating the commutator

Xp]. The coefficients d were equal to zero in SL(2,C) but it is no longer
true in SL(6,C).
The reason why it is impossible to get a group in this way comes from
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the fact that the P’s and the A’s do not belong to the same irreducible repre-
sentation of SL(6,C) [see remark ii) above]. We can avoid this difficulty
by « inhomogeneizing » SL(6,C) in another way, as it has already been
suggested elsewhere [14]. Instead of 36 P’s and 36 A’s, wa can define
400 translation operators P and 400 operators A belonging both to the
representation D(20,20) of SL(6,C). Such a choice leads to a 470 parame-
ter group as an enlarged Poincaré group, but some difficulties concerning
the parity operators can be avoided [14] [16].

In order to generalize the de Sitter groups, we can take the « symplectic
part » of SU(6,6) as mentioned above. Unfortunately, such groups (as
their « Poincaré » limit) do not seem interesting from the physical point
of view, as we shall show.
According to results of Appendix B, sympletic parts Spl2 of SU(6, 6)

contain SUg as a subgroup; the representation 12 of Spl2 reduces to 6 + 6
with respect to SU6. According to the Sp12 rule :

it can be proved that the representation 65 and the adjoint representation 78
reduce into :

with respect to SU6. Then, we get the following Table :

TABLE III

By comparing Tables II and III, it appears that the SU6 group contained
in the symplectic part of SU(6,6) is not the same as that which is contained
in SL(6,C). Moreover, Spl2 has 78 generators, 35 of which are those of SU6 :
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the 43 other ones correspond to the decomposition 21+21+1. Among
them we have to find the usual P~’s; according to the SUg (g) SU2 decompo-
sition :

it appears impossible to attribute to the four PIL’S the same behaviour
with respect to the SU3 group; for this reason we think that these generalized
de Sitter groups cannot be seriously considered as candidates for phy-
sics [18]. The two groups which could be used in physics are the inhomo-
geneous SL(6,C) group and SU(6,6), already investigated in various

ways [19]. The main advantage of SU(6, 6) is that it is a simple group.
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APPENDIX A

LIE ALGEBRA OF THE PSEUDOUNITARY GROUPS

Let M*(n, m) be a complex vector space where a pseudohermitian metric g is
defined :

To each vector x, the metric g associates an element x of the vector dual space,
such that :

with the following properties :

where oc is a complex number and the star denotes the complex conjugate.
It can be proved that every linear operator on M* may be written as a sum

of dyads ab. Given a non-singular linear operator A acting on M*, we define :

i) the adjoint operator A+

The adjoint operator of ab is ba

[Note the property :

ii) a pseudohermitian operator A is an operator satisfying:

aa is a pseudohermitian operator.
In the same manner, we define a pseudoantihermitian operator A as an operator

satisfying :

ab - ba is a pseudoantihermitian operator.
iii) A pseudounitary operator U is such that

or, equivalently,
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It can be easily proved (like in Section I for the pseudo-orthogonal groups)
that a pseudounitary transformation U can be put in the form

where A is a pseudohermitian operator. In fact, according to (A.7) and (A. 11)~
we have :

Given a basis ei of the space M*(n, m), we can write the generators of the U(n, m)
group. They are

and the commutation rules can be readily obtained according to the rule :

We readily see how L(n, m) is a subgroup of U(n, m) since the M;j’s generate
L(n, m).
The group SU(n, m) is a subgroup of U(n, m) and is generated by the Mij’s

and the

The group SL(n + m, C) is generated by the M-s, the N~s’ and the 
and fN-’s.



347ON SOME CLASSICAL SPACE-TIME GROUPS

APPENDIX B

« DE SITTER » SUBGROUPS OF SU (n,n)

It has been shown in Section II that if we define SU(2,2) as the group of com-
plex 4 x 4 matrices which leave invariant the pseudohermitian form ~ = 
with

the two de Sitter subgroups 8(3 of SU(2,2) are those which leave invariant the
symplectic metric :

where P = ± 1. Moreover, for p = 0, one gets the Poincaré group.
The most natural generalization consists in defining the de Sitter subgroups

5~~~’- ~ vn of SU(n, n) by replacing yo by :

and h3 by :

ANN. INST. POINCARÉ, A-II-4 23
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APPENDIX C

ANOTHER SET OF COMMUTATION RULES OF SU(6,6)

In order to normalize the 6 x 6 matrices generating SU 6, we choose the 35 fol~
lowing matrices :

In these relations, 13 is the unit 3 x 3 matrix, 1g the unit 2 x 2 matrix, Xm are
the 3 x 3 matrices generating SU3, ai the 2 x 2 matrices generating SU2.
With such a choice, the generators of SU(6,6) canbe put in the form of the

following 12 x 12 matrices.

a) the 35 generators of SU 6
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b) the 35 generators of « pure Lorentz » transformations

c) the « translation » operators
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d) the « acceleration » operators

e) the scale transformation

In these formulae, aIL = (1, a) and aw = (1, - a). The following commutation
rules can be derived :
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