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Extremal invariant states
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Ann. Inst. Henri Poincare,

Vol. VI, n° 4, 1967,

Section A :

Physique théorique.

ABSTRACT. - A number of results are derived which are pertinent to the
description of physical systems by states on C*-algebras invariant under a
symmetry group. In particular an integral decomposition of a state into
states of lower symmetry is obtained which is relevant to the study of
spontaneously broken symmetries which occur in equilibrium statistical
mechanics as existence of crystals, ferromagnetic states, etc. A characte-

rization is given of strongly clustering euclidean invariant states, and it is

shown that they cannot be decomposed into states of lower symmetry.

1. INTRODUCTION

In recent papers [1] [2] [3] we began the analysis of the structure of inva-
riant states over C*-algebras and the purpose of the present paper is to
continue this analysis. The principal physical motivation for this pro-
gramme is provided by statistical mechanics, both classical and quantum,
where certain invariant states present themselves as natural candidates for
the description of equilibrium [4]. A fuller description of the motivation
and the mathematical concepts which we use is given in the references cited
above. We proceed immediately to the introduction of various definitions
and notations, which will then be used throughout the paper, and which
allow us to describe more precisely the aims of the sequel.
We consider a C*-algebra A with identity, a topological group G with
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identity e, and a representation 03C4 of G as automorphisms of A i. e. for every
g E G there is an automorphism ;g of A,

We almost always assume strong continuity of the automorphisms i. e.

where II Ii is the algebraic norm. We denote by A* the dual of A and
by E the set of states (positive linear forms of norm 1) over A so E  A*.

we define Tg f by ..

and if = f for all g we say that f is G-invariant. Denoting by Lo the

subspace of A generated by elements of the form A - and by L|G the
weakly closed subspace of A* defined by

it is immediately clear that f E A* is G-invariant if, and only if, f E L~.
Further, the G-invariant states over A are the elements of the convex

(weakly) compact set E n L~. We denote the extremal points of a subset
K of A* by 8(K).
Now, using a well known method due to Gelfand, Naimark and Segal,

it is possible to construct from a state 03C1 ~ E a representation of A by bounded
operators acting on a Hilbert space Jep, with a normalized vector
Dp E Jep which is cyclic for in Jep. The explicit connection of these
various quantities is given by

If p E E n L~ the above construction also yields a unitary representation Up
of G acting on Jep which is strongly continuous if (1) is satisfied and such
that for all g E G and 

Thus Qp is a G-invariant vector in Jep.
In this paper we will be principally interested in studying extremal G-inva-

riant states i. e. states p E 8(E n a property that is equivalent to the
property that the set of operators itp(A) u Up(G) is irreducible on It
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was demonstrated in [2] [3] that for C*-algebras which are « asymptoti-
cally abelian » with respect to G, i. e. algebras with the property

and if certain separability conditions are satisfied, a state p e E n L~ can
be uniquely expressed as an integral over states pk E 8(E n Thus in

such cases the study of states pEE f1 L~ is effectively reduced to a study
of the extremal states.

Actually the above mentioned result was presented in [2] [3] for G = Rn
but the generalization to a large class of locally compact groups can be
obtained by merely making appropriate notational changes in the proofs.
Our first new result, presented in Section 2, is an integral representation

of a state p E 8(E n L~) in terms of states in 8(E n where H is a closed

invariant subgroup of G such that G/H is compact. If the algebra A has
the asymptotically abelian property with respect to H the decomposition
is unique. This theorem is of interest in statistical mechanics in connection

with the occurrence of spontaneously broken symmetries ; it is a generaliza-
tion of a theorem obtained in [3] for G = Rn. In Section 3 we specialize
to the case where G is the Euclidean group in n dimensions and discuss

strongly clustering euclidean invariant states. In Section 4 we establish

properties of the spectrum of the n-dimensional translation groups for
various cases of physical interest.

2. DECOMPOSITION THEOREM

In the following decomposition theorem we use the measure theoretic
techniques introduced in [2]. As explained in [2] (for fuller details see [5])
a partial order &#x3E;- may be introduced among the positive measures on the
convex compact set E n L~ such that ~ ~2 is equivalent to &#x3E; 

for all convex continuous functions q&#x3E; on E n Liï and thus [.Ll(~) = ~(~) for
all continuous linear functions on E n L|H. Thus if for A e A we define

the complex continuous linear function A on E n L|H by

then a measure ~p with the property ~p &#x3E;- ~p, where 8p is the unit mass at p,
provides the decomposition
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THEOREM 1 (I). Let G be a topological group and H a closed invariant
subgroup of G such that the quotient space G/H is compact and has a G-inva-

riant measure dg normalized to 1 i. e.

Further, let A be a C*-algebra with identity, ’t" a strongly continuous represen-
tation of G as automorphisms of A, and take p E E(E n Then there

exists a measure p,p concentrated on E(E () ~) (and thus maximal for the
order ~ ) which majorizes the unit mass 8p at p. Furthermore there exists a

p E t(E () L~) such that for every continuous function c~ on E () L~

In particular for all A E ~

We remark firstly that the condition that the space G/H should have a

G-invariant measure dg would automatically be satisfied if G and H were
unimodular locally compact groups (see for instance [6]). More generally
if G is locally compact and 0394G, 0394H are the modular functions of G and H

respectively then a necessary and sufficient condition for the existence of dg
is that

PROOF. 2014 We begin by noting that for p e E n L~ fixed, is a

continuous function on G and is invariant under right translations by H.
Therefore it defines a continuous function on G/H. Next let us define the

~~ ~

average ( A ) of A by

and we now demonstrate that ( A ) is a continuous function on E n L;.
We denote by g the image of g E G under the canonical mapping p of G
onto G/H and write

(1) We are very indebted to J. Ginibre for discussions of this theorem; the proof
given here was, up to minor changes, written by him, and is reproduced with his
permission.
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Now for any e &#x3E; 0 there exists an open neighbourhood N(gi) of gl E G
such that

... *

As p is open the image = is an open neighbourhood of gt
.... 

in GjH and as for any g E N(gl) there exists ~ n we have

.. *

Now let (N(~)),=i ~ be a finite covering of the compact space G/H by
.. 

such neighbourhoods (i. e. N(gi) ===/?N(~)). Consider p’ E E n L~ such
that

Since any g E G/H must lie in N(gl) for some value of i, we have

.. *

Therefore ~p’(g) tends uniformly to ~p(~) as p’ tends to p, this proves the
""

continuity of  A &#x3E; as a function of p.
We next define, for any 03C1 ~ E (B L|H, the average of p by

Clearly ( p ) E E n L~ and if pEE n L~ then ( p ) = p. We now consi-

der a fixed p E 8(E n LG~ and define the set Kp by

or, more explicitly,

For every A e A the set

is closed, because of the continuity of ( A ~. Therefore Kp is a closed

subset of E n I,H and hence compact. On the other hand Kp is convex

and not empty so it has extremal points. We next show that if p e 
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then p E 8(E n L~). In fact suppose that p ø 8(E n then there exist ol,
p2 E E and 03BB real (0  03BB  1) such that p -# PI and

’" - N

At least one of ol, p2 cannot lie in KP and we suppose 03C11 ~ Kp. Hence
N

F ~ ~ Pl ,. On the other hand

which is in contradiction with the assumption that p E 8(E n There-

fore p E 8(E n Lj).
Now let cp be a continuous function on E n L* i. e. cp E e(E () L~).

Then is a continuous function on G and is invariant under right
translations by H. We can therefore define

With this definition is a positive linear functional on C(E n L~) and hence
a positive measure. If cp Ee(E vanishes on 8(E n L~) then = 0

for all g E G and = 0. Therefore {.Lp is concentrated on 8(E n L*).
Finally for any A we have = ( p ) (A) = p(A) which concludes
the proof.
Thus we have now established the existence of a measure yp &#x3E; 8p which

is not only maximal with respect to the order relation but is also concentra-
ted on the extremal points 8(E n If A is asymptotically abelian with
respect to H, the maximal measure yp is unique due to the results of [2] [3]
and hence the decomposition (2) is unique.
We now turn our attention to properties of extremal invariant states for

more specific cases of physical interest.

3. EUCLIDEAN INVARIANT STATES

The first result we derive is independent of algebraic structure.

LEMMA (2). - Let U : (a, R) -~ U(a, R) be a strongly continuous unitary
representation in the Hilbert space ~ of the euclidean group of Rv, v &#x3E; 2.
~ 

(?) This lemma is related to some results obtained in quantum field theory for
the Lorentz group, see for instance Borchers [7], lemma 4.
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If ~ H and if Po is the projection on the subspace of Je formed by the
vectors invariant under U(Rv, 1 ), then

PROOF. - For clarity we shall use in this proof the functional notation
instead of for a measure ~.

By Stone’s theorem, there exists a projection-valued measure E on Rv
such that

The measure ~. = (’1’, EC) then satisfies

Thus, given e &#x3E; 0 there exists a neighbourhood JY’ of 1 in the orthogonal
group in v dimensions such that if then

Because the orthogonal group is compact, we may choose invariant

under inner automorphisms.
We may choose a Coo function cp &#x3E; 0 with support in J~", invariant under

inner automorphisms of its argument and such that = 1. We

have then

If we can prove that
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then, (1) will result from (5), (6) and

We have

where

depends only on the scalar product pa because of the assumed invariance
of p under inner automorphisms of its argument. We may write

and for p ~ 0 fixed

where ~ E Since the Fourier transform of 8( ~ . ~ I - p I) is conti-
nuous and tends to zero at infinity and the Fourier transform of~ is abso-
lutely integrable, it follows from (10) that f tends to zero at infinity. Since

f(0) = 1, we see from (8), (9) that

which proves (6) and therefore the lemma.
Now, with the aid of the above lemma, we can deduce the following

theorem concerning the structure of euclidean invariant states.

THEOREM 2. Let .,4 be a C*-algebra with identity, G the euclidean group
of Re, pEE () L~, ’": a representation of G as automorphisms of .~ such that
the corresponding unitary representation Up of G in Jep is strongly continuous.
The following conditions are equivalent.

1 . lim peAl 03C4(a, 1)A2) = p(A2) for Ai, A2 E A

2. S2p is the unique vector in Jep invariant under Up(Rv, 1 )
and imply the following equivalent conditions
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3. p E 8(E n L~).
4. n Up(H) is irreducible

for any closed non compact subgroup H of G. Conversely, f A is asympto-
tically abelian with respect to Rv and H ~ RV, then 3. (or 4.) implies 1. (or 2.).

The equivalence 1. ~ 2. follows directly from the Lemma and [3] and
the equivalence 3. ~ 4. is of general nature (see [2] and [3] for characte-
rizations of extremal invariant states). The irreducibility of 7tp(A) u Up(H)
for H ~ Rv implies the irreducibility of u Up(Rv) and therefore if A
is asymptotically abelian 4. =&#x3E; 2.

We conclude the proof of the theorem by showing that 1. =&#x3E; 4. Since H
is closed non compact we can choose a sequence Ri) of elements of H
such that ai - oo, and since the orthogonal group is compact we may assume
(possibly going to a subsequence) that is invariant

under Up(H), we have then Ri)1&#x3E; === 1&#x3E; or Ulo, = Up( - aj, 
.By construction

On the other hand the assumption 1 and the lemma yield

Therefore

and the subspace of vectors C E Jep invariant under Up(H) reduces to the
scalar multiples of Qp. It follows then by standard arguments that

so that 1. implies 4.
The above theorem is similar to theorems given in [1], [2] and [3] for

invariant states with G = Rn. The major difference between the above
theorem and the previous theorems is that the strong cluster property 1.

has replaced the weak cluster property which characterizes the states

p E 8(E n L~). It is interesting to note that as Theorem 2 establishes

that a euclidean invariant state p with the strong cluster property is such

that p E 8(E n L~) for all non-compact subgroups H c G there can be
no (non-trivial) decomposition of p of the type derived in theorem 1. Thus
one might say that the « natural » invariance of such a state is the full eucli-
dean invariance. Conversely, if -4 is asymptotically abelian, p E 8(E n L~)
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but is not strongly clustering, then there must exist a non-trivial decomposi-
tion of p into states with a lower invariance.

In [3] extremal invariant states over an asymptotically abelian algebra
were studied with G = Rn and a classifications Ei, En and EIII of such states
was introduced. In the light of the above discussion this classification can
be understood as follows. An EI-state has « natural » invariance under all
translations G = Rn ; an En-state can be decomposed uniquely into states
with « natural » invariance under a subgroup of translations, H = R n-n1 X Znl
with 0  n1  n ; an EIII-state can be decomposed with respect to many
different subgroups of G but no decomposition leads to states with a « natu-
ral » invariance. Actually this classification was introduced in [3] through
consideration of the spectral properties of the unitary operators Up(Rn)
associated with a state p E 8(E n In the next section we derive further

properties of this type.

4. SPECTRUM PROPERTIES

THEOREM 3 a. - Let G = Rv; X Z~s and pEE n L~. We assume that

the representation Up is strongly continuous. Let E be the projection-valued
measure on RVl X such that

1. Let A be abelian. Then, supp E = - supp E.

2. Let contain a dense subset  such that, if AI, A2 E , then

[Ab TgA2] = 0 for g outside of some compact.
If S c Rv has Lebesgue measure zero and 0, then E( - S) ~ 0.
3. Let be asymptotically abelian and Sd = { p E Rv : E( { p }) ~ 0.

Then Sd = - Sd.
4. Let A be asymptotically abelian and p E 6(E n L|G), then Sd + Sd ~ Sd

and if p E Sd, then E({ p }) is one-dimensional.

To prove l. and 2. we use the fact that, if A E A, the Fourier transform
of the measure

is p([A*, In case 1. we have thus u. = 0. In case 2., for A 

{jL is an analytic function.
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To prove 3. we use lemma 1 of [3] which establishes, for a certain filter of
functions f«, that

Statement 4. has been included for completeness : it was already proved
in [3] (Theorem 4).
With slightly stronger continuity assumptions we have

. 

THEOREM 3 b (3). - Let G = R"= x ZV2 and p E 8(E n L~). We assume

that for all A E A, lim ~i A 11 = 0. Let E be the projection-valued’

measure on RVl X such that

If A is asymptotically abelian, then supp E + supp E c supp E.
If A e -4, be the Fourier transform of g ~

If A~ = then supp supp (p. 
.

Let now pl, p2 E supp E, and Xi be a neighbourhood of pl. One may
. 

- -

choose Ai of the form A;p such that supp Xi and 0

(because is of the form 

If A = then, for every supp A c + X2 hence

We have on the other hand from [3] (lemma 1 ) that/ex &#x3E; 0 exists such that

which shows that, for some h, 0.

(1) implies then that + JY’2) ~ 0, hence that pi + supp E,
which proves the proposition.

(3) The proof of this lemma is based on a technique used in relativistic field
theory. See Wightman [8], p. 30.
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The above theorems have not established that supp E is in general sym-
metric and, indeed, asymmetry can arise but then the following result is
valid.

THEOREM 3 c. - Let G = Rv, pEE t1 L~ and Up be strongly continuous.
Let E be the projection-valued measure on Rv such that

If E( { 0 }) is one-dimensional and E is concentrated on {O} u S, where
E( - S) = 0, then is irreducible, i. e. p E 

A simple proof is given in [9], p. 65.
Thus we see that the asymetry of the spectrum implies that p is extremal

among all states (a pure state), a situation which is typical of quantum field
theory, but which would arise only exceptionally in statistical mechanics.
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