@article{AIHPA_1967__7_4_353_0, author = {Flamand, G.}, title = {On the {Regge} symmetries of the $3j$ symbols of $SU \, (2)$}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {353--366}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1967}, mrnumber = {223139}, zbl = {0241.20035}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1967__7_4_353_0/} }
TY - JOUR AU - Flamand, G. TI - On the Regge symmetries of the $3j$ symbols of $SU \, (2)$ JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1967 SP - 353 EP - 366 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1967__7_4_353_0/ LA - en ID - AIHPA_1967__7_4_353_0 ER -
%0 Journal Article %A Flamand, G. %T On the Regge symmetries of the $3j$ symbols of $SU \, (2)$ %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1967 %P 353-366 %V 7 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1967__7_4_353_0/ %G en %F AIHPA_1967__7_4_353_0
Flamand, G. On the Regge symmetries of the $3j$ symbols of $SU \, (2)$. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 7 (1967) no. 4, pp. 353-366. http://archive.numdam.org/item/AIHPA_1967__7_4_353_0/
[1] Nuovo Cim., t. 10, 1958, p. 296.
,[2] U. S. Atom. Energy Comm. NYO-3071 (Reprinted in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H.Van Dam. Academic Press, 1965).
, unpublished, 1952.Rev. Mod. Phys., t. 34, 1962, p. 829. Some acquaintance with these beautiful papers is expected from the reader. | MR | Zbl
,[4] J. Math. Phys., t. 7, 1966, p. 612. It is proved in this paper that the 3j symbols of any compact group do have the class I symmetries except when the three representations are equivalent. In that case a general criterion for their existence and a counter example are given. | MR | Zbl
,[5] Another instance of this property can be found in A. J. DRAGT, J. Math. Phys., t. 6, 1965, p. 533, section 6 B, in a somewhat different context though.
[7]
, Orsay preprint, TH/138.[8] The Lie algebra SO*(2n) , is described in , Differential Geometry and Symmetric Spaces, Academic Press, 1962, p. 341.