On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension 3 and 4 by means of real, irreducible tensors of rank p
Annales de l'I.H.P. Physique théorique, Tome 18 (1973) no. 4, pp. 367-378.
@article{AIHPA_1973__18_4_367_0,
     author = {Ebner, Dieter W.},
     title = {On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension $3$ and $4$ by means of real, irreducible tensors of rank $p$},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {367--378},
     publisher = {Gauthier-Villars},
     volume = {18},
     number = {4},
     year = {1973},
     zbl = {0273.53014},
     mrnumber = {343191},
     language = {en},
     url = {archive.numdam.org/item/AIHPA_1973__18_4_367_0/}
}
Ebner, Dieter W. On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension $3$ and $4$ by means of real, irreducible tensors of rank $p$. Annales de l'I.H.P. Physique théorique, Tome 18 (1973) no. 4, pp. 367-378. http://archive.numdam.org/item/AIHPA_1973__18_4_367_0/

[1] Él. Cartan, The Theory of Spinors, Hermann, Paris, 1966 (printed from the notes of Cartan's lectures, gathered and arranged by André Mercier). | Zbl 0147.40101

[2] M.F. Atiyah, Bott and Shapiro, Clifford modules (Topology, 3/1, 1964). | MR 167985 | Zbl 0146.19001

[3] Cl. Chevalley, The Algebraic Theory of Spinors, Columbia Press, 1954. | MR 60497 | Zbl 0057.25901

[4] C.M. De Witt [Ed.], Batelle Rencontres, 1967, Lectures in Mathematics and Physics, W. A. Benjamin Inc. (see R. Penrose, The Structure of Space Time). | Zbl 0167.00207

[5] H. Freudenthal and H. De Vries, Linear Lie Groups, Academic Press, New York, London, 1969. | MR 260926 | Zbl 0377.22001

[6] R. Penrose, Angular Momentum : An Approach to Combinatorial Space-Time. In Quantum Theory and Beyond (T. Bastin, Ed.), Cambridge, 1971.

[7] W. Heisenberg, Einführung in die einheitliche Feldtheorie der Elementarteilchen, S. Hirzel Verlag, Stuttgart, 1962.

[8] C.F. Von Weizsäcker, Die Quantentheorie der einfachen Alternative, Komplementarität und Logik, I I (Zeitschrift f. Naturforschung, 13 a, 1958, p. 245). | Zbl 0133.45104