Definite magnetofluid scheme in general relativity
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 20 (1974) no. 2, pp. 189-200.
@article{AIHPA_1974__20_2_189_0,
     author = {Shaha, R. R.},
     title = {Definite magnetofluid scheme in general relativity},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {189--200},
     publisher = {Gauthier-Villars},
     volume = {20},
     number = {2},
     year = {1974},
     mrnumber = {356827},
     zbl = {0292.76068},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1974__20_2_189_0/}
}
TY  - JOUR
AU  - Shaha, R. R.
TI  - Definite magnetofluid scheme in general relativity
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1974
SP  - 189
EP  - 200
VL  - 20
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1974__20_2_189_0/
LA  - en
ID  - AIHPA_1974__20_2_189_0
ER  - 
%0 Journal Article
%A Shaha, R. R.
%T Definite magnetofluid scheme in general relativity
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1974
%P 189-200
%V 20
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1974__20_2_189_0/
%G en
%F AIHPA_1974__20_2_189_0
Shaha, R. R. Definite magnetofluid scheme in general relativity. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 20 (1974) no. 2, pp. 189-200. http://archive.numdam.org/item/AIHPA_1974__20_2_189_0/

[*] C.D. Collinson, Conservation Laws in General Relativity Based Upon the Existence of Prefered Collineation. General Relativity and Gravitation, t. 1, 2, 1970, p. 137. | MR | Zbl

[1] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1960, p. 92. | MR

[2] P.J. Greenberg, Propagation Equations for the Set of Natural Geometrical Invariants in Relativistic Hydrodynamics. J. Math. Anal. Appl., t. 29, 1970, p. 647. | MR | Zbl

[3] P.J. Greenberg, The General Theory of Space-like Congruences with an application to Vorticity in Relativistic Hydrodynamics. J. Math. Anal. Appl., t. 30, 1970, p. 128. | MR | Zbl

[4] S.W. Hawking and G.F.R. Ellis, The cosmic Black-Body Radiation and the Existence of Singularities in Our Universe. Astrophys. J., t. 152, 1968, p. 25.

[5] A. Hewish, Pulsars. Endeavour, t. 28, 104, 1969, p. 55.

[6] V.D. Khade, Studies in Groups of Motions and Ricci Collineations. Ph. D. Thesis, unpublished, Shivaji University, 1973.

[7] A. Lichnerowicz, Théories relativistes de la Gravitation et de l'Électromagnétisme. Masson et Cie, Paris, 1955, chap. I. | MR | Zbl

[8] A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics. W. A. Benjamin, Inc., New York, chap. IV. | Zbl

[9] S.N. Pandey and Y.K. Gupta, Space-time of Class one and Perfect Fluid Distribution. University of Roorkee Research Journal, t. 12, 1970, p. 9. | MR

[10] E.N. Parker, The Solar Wind. Frontiers in Astronomy. Readings from Scientific American, W. H. Friedman and Co., San Francisco, 1964, 1970, p. 98.

[11] A.Z. Petrov, Einstein Spaces. Pergamon Press, 1969, Chap. 4, p. 132. | MR | Zbl

[12] K.S. Thorne, Astrophysical Relativity. Orange Aid Preprint Series in Nuclear Astrophysics, 1968, OAP-123.

[13] P.R. Wilson, The Structure of a Sunspot. Solar Physics, 1968, t. 3, p. 243.