@article{AIHPA_1974__21_3_185_0, author = {Robinson, Derek W.}, title = {Scattering theory with singular potentials. {I.} {The} two-body problem}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {185--215}, publisher = {Gauthier-Villars}, volume = {21}, number = {3}, year = {1974}, mrnumber = {377304}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1974__21_3_185_0/} }
TY - JOUR AU - Robinson, Derek W. TI - Scattering theory with singular potentials. I. The two-body problem JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1974 SP - 185 EP - 215 VL - 21 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1974__21_3_185_0/ LA - en ID - AIHPA_1974__21_3_185_0 ER -
%0 Journal Article %A Robinson, Derek W. %T Scattering theory with singular potentials. I. The two-body problem %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1974 %P 185-215 %V 21 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1974__21_3_185_0/ %G en %F AIHPA_1974__21_3_185_0
Robinson, Derek W. Scattering theory with singular potentials. I. The two-body problem. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 3, pp. 185-215. http://archive.numdam.org/item/AIHPA_1974__21_3_185_0/
[1] Commun. Math. Phys., t. 20, 1971, p. 301-323. | MR | Zbl
,[2] J. Math. Phys., t. 14, 1973, p. 376-379. | MR | Zbl
,[3] Israel Journ. Math., t. 13, n° 1-2, 1972, p. 135-148. | MR | Zbl
,[4] Arch. Rat. Mech. Anal., 1973.
,[5] Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. | MR | Zbl
and ,[6] Theory for Linear Operators. Springer-Verlag, Berlin, 1966. | MR
,[7] Methods of Modern Mathematical Physic. Vol. II, Academic Press (to be published).
and ,[8] Math. Ann., t. 162, 1969, p. 258-279. | MR | Zbl
,[9] Commun. Math. Phys., t. 2, 1966, p. 147-154. | MR | Zbl
and ,[10] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, 1971. | MR | Zbl
,[11] Commun. Pure Appl. Math., t. 22, 1969, p. 531-538. | Zbl
,