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On thermodynamics of a gas
with vibrating molecules

Ingo MÜLLER

Department of Mechanics and Material Science,
The Johns Hopkins University, Baltimore, Marylands 21218

Ann. Inst. Henri Poincaré, ’

Vol. XXI, n° 3, 1974,

Section A :

Physique , theorique. ,

ABSTRACT. The form of the entropy inequality is determined for a gas
whose vibrational energy is not in non-equilibrium determined by the
temperature. Phenomenological and statistical arguments are employed
to derive an inequality that differs from the Clausius Duhen inequality
in two terms.

1. INTRODUCTION

This paper presents an effort to formulate a thermodynamic theory of a
gas with one scalar internal variable that represents the specific vibrational
energy of the molecules of a gas. The equations of balance of mass, momen-
tum and internal energy customary in thermodynamics are here supple-
mented by a general equation of balance for the vibrational energy. These
equations of balance and simple constitutive equations give rise to field
equations which a thermodynamic process must satisfy. The constitutive
equations are subject to restrictions imposed by the requirement that the
entropy principle is valid for all thermodynamic processes. The form of
the entropy inequality adopted here goes back to ideas set forth by Muller
and Liu in [1] and [2] respectively and the evaluation of this inequality
uses the method of Lagrange multipliers developed by Liu in [3]. The entropy
flux is shown to depend on the flux of internal energy and on the flux of the
vibrational energy. Similarly, the supply of entropy contains one term
dependent on the supply of internal energy and another term dependent on
the supply of vibrational energy.
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246 I. MÜLLER

A statistical calculation allows the determination of the constitutive
functions for the internal energy and the entropy and thus offers the possi-
bility to identify the Lagrange multipliers of the phenomenological theory
in non-equilibrium.

2. PHENOMENOLOGICAL THEORY
OF A GAS WITH VIBRATING MOLECULES

a) Equations of balance, constitutive equations,
thermodynamic processes

In a gas whose molecules can vibrate with one frequency the following
fields are of macroscopic interest

The inclusion of the field t) among this list is motivated by the obser-
vation that, when the gas undergoes rapid changes, the energy stored in the
vibrational motion of the molecules is not determined by the temperature.
The field equations for the determination of the fields (2 .1 ) are based

upon the equations of balance of mass, momentum, internal energy, viz.

and upon an equation of balance for the vibrational energy

In the equations (2.2) and (2.3) is the stress, qi the flux of internal energy,
E the specific internal energy which includes the vibrational energy, while fi
represents the external body force and r and rV are the supplies of internal
energy and of vibrational energy respectively, both due to the absorption
of radiation by the gas molecules. qv is the flux of vibrational energy and

(*) Cartesian tensor notation is used throughout this paper, whereby indices such
as n or ij in xn or tij denote cartesian components of the position vector and the stress
tensor respectively. Further, a comma denotes differentiation with respect to a spatial
variable and Einstein’s summation convention is employed. Thus for instance qi,i means
the divergence of the heat flux.
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247THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

o- is the density of its production due to the interaction of the gas molecules
among each other. A comma denotes spatial differentiation and a super-
posed dot denotes the material time derivative.
For given external supplies t), /’(/, t) and t) the equations (2 . 2)

and (2 . 3) furnish field equations for the fields (2 .1) if supplemented by consti-
tutive equations which relate qi, qVi, 8 and 03C3 to the fields p, 03BDi, T and ~V
in a materially dependent manner. I choose the following simple constitu-
tive relations

where the coefficients a, j8, a v, p, v and  may depend on p, T, adjust as e
and o- do ; - a is called heat conductivity, p is called pressure and  and v
are called viscosity and volume viscosity respectively. Elimination of e, (1,

qi, qVi and tij between (2 . 2), (2. 3) and (2.4) provides a set of field equations
for arbitrarily prescribed functions r(x", t) and t). Every
solution t), t), t) and t) of these field equations is
called a thermodynamic process in the gases considered here.

b) Entropy principle and its general consequences

Let ~ denote the specific entropy, 03A6i the entropy flux and s the external
supply of entropy and assume that ~ and 03A6i are given in the gases under
consideration by the constitutive equations

while s is a linear function of fi, rand rV of the type

where 03BBi, 03BB and 03BBV may depend on p, T, aB T,b ~,Vi, in a manner dependent on
material. The right hand side of (2 . 5) makes it clear that 03A6 is a linear function
of T, and ~. This explicit form of the constitutive equation is used later
in the derivation of equation (2.14), although the coefficients cp and ’"
do not appear again.

(*) Round indices indicate symmetrization.
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248 I. MÜLLER

The entropy principle adopted here requires that the inequality

hold for all thermodynamic processes.
According to this principle the entropy inequality (2.7) need not be

satisfied for all fields 0. ~) ~), ~~~
t) but only for thermodynamic processes. In other words, the fields

t) through t) for which the entropy inequality must hold are
constrained to be solutions of the field equations (2.2), (2.3) and (2.4).
Liu has shown in [3] that we may rid ourselves of these constraints by the
use of Lagrange multipliers A and Av which can in general be
functions of p, T, Ev, e~ rv. He proved that the statement
that (2.7) be satisfied for all thermodynamic processes implies the statement
that the new inequality

be satisfied for arbitrary analytic fields p, v~, T, r and rv.
When the constitutive equations (2.4) and (2. 5) are introduced into (2. 8)

as well as the assumption (2.6), what results on the left hand side of this

inequality is an expression linear in

Therefore and because each one of these quantities can be chosen arbi-

trarily, the inequality (2.8) could easily be violated, if any term containing
a quantity (2.9) would contribute to its left hand side. To avoid this we
must have the following conditions which are easily verified :

(*) The assumption that Of be given by a constitutive equation of its own is due to

Muller (see [1]) and replaces the more customary assumption that the entropy flux be

equal to the heat flux divided by the absolute temperature. The assumption (2.6) concern-

ing the form of the entropy supply is an obvious adaptation of an idea of Liu presented
in [2].
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249THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

Since Av = 0, the remaining inequality reads

and since by (2 .10)3 ,1 A and A v are independent r and rV we recognize
that the left hand side of (2.11) is linear in the arbitrary quantities fi, r
and r". Thus we conclude by the same argument, which led to (2.10), that

holds, whence it follows that the entropy supply is related to the supplies
of internal and vibrational energy as follows

The equations (2.4)3~ and (2. 5)2 show that qi, q~ and depend linearly
on T,i and 8~ and therefore a trivial calculation shows that (2.10)6,7 imply
the equation

for the entropy flux. Equation (2.10)5 requires further that

I rewrite (2 .10) 3 ,4 and eliminate 03C1, 03A6i, 03BBi, 03BB and 03BBV from (2.11) by use
of(2.10)i, (2.12) and (2.13) thus getting

(*) There is an alternative to (2.15) as a consequence of (2.10)5’ but that requires that qi
and qVi be parallel which I think is unlikely to be true in general.
Vol. XXI, no 3 1974. lg



250 I. MULLER

The left hand side of the residual entropy inequality (2.18) is called the

density of entropy production and denoted by E. From (2.16) and (2.17)
follows 

.

as an integrability condition for ~.
The relations (2.13) through (2.19) exhaust the general consequences

of the entropy principle. All of them contain the Lagrange multipliers A, Av
whose equilibrium values I now proceed to calculate.

c) Consequences of the entropy principle in equilibrium

If the external supplies are absent, equilibrium is characterized by uniform
and time-independent fields of density, velocity, temperature and vibrational
energy. Inspection of (2.3) and (2.18) shows that the densities of both
the production of vibrational energy and the production of entropy vanish
in equilibrium :

When we assume that T, BV) is invertible with respect to ~B
equation (2 . 20) 1 states that in equilibrium E~ is a function of p and T so
that

holds. The interdependence of the variables expressed by this relation leads
to the following identities for every function F(p, T, BV)

The entropy production density E is obviously a function of the variables

p, T, 8v, T, z, ~V,i 03BD(i,j). With the already assumed invertibility of 03C3 (p, T,
Ev) we may also consider E as a function of the form

and from (2. 20) we infer that the entropy production assumes its minimum,
namely zero, in equilibrium. Thus of necessity we must have

where XA stands for any one of the variables (1, ~ 

(*) The index E denotes equilibrium.
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251THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

From (2 . 23) 1 one concludes immediately

and these two equations together with (2.16), (2.17) and with the identi-
ties (2.22) applied to ~ and E imply the equation

Thus we come to identify the equilibrium value of the Lagrange multiplier A
with the reciprocal of the absolute temperature

because classical thermo statics of fluids and gases defines the absolute

temperature as the integrating denominator of the expression

that leads to entropy as the integral function.
The equations (2.25) and (2.26) imply the equation

which is the central result of thermostatics of fluids and gases, well-known
since Clausius.

hold and since by (2.15) A and A v are independent of p, the identities (2 . 22)
applied to A and Av lead to the conditions :

which can be satisfied in various ways, the most natural one being that

= 0 holds.

It is a routine matter to evaluate the condition (2.23)2- This condition

Vol. XXI, no 3 - 1974.
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imposes the following restrictions upon the coefficients in (2.4) and upon
the Lagrange multipliers

For the derivation of (2.29) use has been made of most of the previous
results (2.15) through (2.28).

d) Discussion of the results of the phenomenological theory

In the last section it has been possible to calculate the equilibrium values

of the Lagrange multipliers A and Av as - and zero respectively. Thus the
thermostatic result (2 . 27) could be regained and |E and could be

shown to be non-negative. Apart from these results, however, even the

equilibrium results still depend on unknown properties of A and namely

on ----y and ~-! ; of course, v and not independent,a 

~ ~ ~ 3-~E E
because from (2.19) and from the identities (2.22) applied to A and A’
one concludes that

must hold. Clearly it would be desirable to learn more about the Lagrange

multipliers A and A v, or at least about 2014y I or 2014y , but that would~8 JB ~~tE
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253THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

require additional assumptions about the entropy flux or the entropy
supply which I am not prepared to make (*).

Instead, I shall now proceed to consider a simple statistical model which
will permit the determination of the functions

and thereby in virtue of equations (2.16), (2.t7)2014the determination of
A(T, 8V) and 8V).

I remark that the results of this chapter are applicable to materials with
an arbitrary scalar internal variable, as long as the constitutive equations
are of the form (2.4) and (2. 5). Indeed, nothing but wording and notation
has so far suggested that the internal variable in the present case is a vibra-
tional energy. This case was chosen for easy visualization and because it
lends itself to the statistical consideration of the next chapter.

3. STATISTICAL THEORY

OF A GAS WITH VIBRATING MOLECULES

The objective of this section is the statistical calculation of the specific
internal energy and the specific entropy of a gas of N non-interacting
molecules with translational energy EB vibrational energy Ev in a

volume V (**). Let pc, p" and pxi be the probabilities that one molecule has

kinetic energy- c2, vibrational energy hv (n + ~) and position x e V,

where m and v are mass and eigenfrequency of the molecule, h is Planck’s
constant and n may range over all integers 0, 1,2, ... These probabilities
are obviously constrained by the equations

and by the requirement that the expectation values of the kinetic and vibra-

(*) Obviously, if we were to assume that holds, or j* === _,~, which assumptions
are both frequently made, the problem explained above would no exist and, in parti-

cular 2014- and 20142014 would both vanish. However, in view of the results of the statis-ts !a 3-e v E
tical considerations of the next section, these assumptions cannot be trusted.

(**) The possibility that the molecules may also have rotational energy could be taken
into account, but is ignored here for the simplicity of the argument.
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tional energies of the molecules be equal to the mean values of these ener-
gies, viz.

The mean value of entropy is given by

We find the probability distribution that makes  a maximum, while

it satisfies the constraints (3 .1 ) and (3 . 2) in the usual manner by forming
the expression

where oc, /?, y, ~, ~p are Lagrange multipliers, and setting its derivatives with
respect to and px~ equal to zero. The result is

and Ct, C2, C3, b and 03C6 must be determined from the constraints : let
the number of speeds between c and c + dc be X403C0c2de and let the number
of positions in dV be YdV where X and Y are constant factors of propor-
tionality. Thus the sum over the values of c and ~i are converted into inte-
grals while the sum over n can easily be calculated; one obtains

The entropy calculated with these probability distributions follows from (3 . 3)
and one obtains
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255THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

In the statistical theory we take the translational energy ET as a measure
of temperature or, more explicitly, we set

With (3.5) the equation E = ET + Ev and (3.4) determine energy and
entropy as functions of volume, temperature and of the vibrational energy EB
Division of E = ET + Ev and (3.4) by the total mass Nm gives the specific

values of internal energy and entropy in terms of the variables p = T

If mEV » hv is assumed, the last equation assumes the form

4. SYNOPSIS AND DISCUSSION

a) Synopsis of the phenomenological
and the statistical calculation

The explicit form (3.6) of the constitutive functions for 8 and ~ permits
the calculation of the Lagrange multipliers A and Av for a gas with vibrating
molecules from the equations (2.16), (2.17). The results are obviously

and in the case that hv « m~V holds, (4.1)2 reads

Vol. XXI, nO 3 - 1974.
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The following results will all be based on (4.2) rather than (4.1)~ because
thus they will assume a simpler form. The reader can easily obtain the
corresponding results based on (4.1)2 himself.
The two equations (2.13) and (2.14) now assume the forms

while the equations (2.15) and (2.19) are identically satisfied.
Equation (2 . 24) 1 implies

which, of course, is the only acceptable result in view of the equipartition
theorem of statistical mechanics (*). From (2.24)2 we conclude that

which again is natural, since the statistical model is one appropriate for an
ideal gas. Equation (2. 26) is satisfied here, in fact, by (4.1) this equation
even holds in non-equilibrium in the present case. Both equations (2.28)
are now satisfied because ~~V|E~ = o holds. -y = 0 and ~V| = -m l 1c7-P c7-EV 0153 k T
according to (4 .1 ) 1 and (4 . 2) and therefore the equilibrium equa-
tions (2.29)1,2,3,7 assume the forms

b) Discussion of some results

Since translational and vibrational energy of the molecules are the two
contributors to the total internal energy so that E = GT + 8 v holds, it is

suggested also to split the flux of internal energy according to

(*) Of course, if m~V is not satisfied the equipartition theorem is not expected
to hold and neither is (4.4); in fact, this equation is replaced by Planck’s formula for the
vibrational energy of a system of oscillators.
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257THERMODYNAMICS OF A GAS WITH VIBRATING MOLECULES

where qT is the flux of translational energy of as before, the flux of vibra-
tional energy. If this is done the entropy flux (4. 3)2 assumes the suggestive
form

and the constitutive relations for qT and qv are

Thus we conclude from (4.5)~ ~ that a temperature gradient gives rise
to a flux of translational energy opposite to its direction and that a gradient
of E‘’ gives rise to a flux of vibrational energy opposite to its direction.

In a manner analogous to the decomposition (4.6) of the flux of internal
energy we may split the supply of internal energy into two parts

where rT denotes a supply of translational energy. Thus from (4.3)1 we get

In general we expect both contributions to s to be present and their relation
will be determined by the nature of the incident radiation as well as by the
atomic structure of the oscillators. If there is only absorption of radiation
by the vibrational motion, so that 0 holds, we have

and we conclude that, given a certain supply of internal energy /-, its contri-
bution to the supply of entropy is determined by the vibrational energy
and not by the temperature. This result is somewhat reminiscent of an

assumption made by Gurtin and Williams [4], according to which s equals r 03C6,
where the « volume-relevant temperature » 03C6 is a scalar constitutive quan-
tity; but the analogy is not complete, since in these authors’ work I&#x3E; i is

assumed to be equal to qi T which is not born out by (4.7).
V-8v

We continue to assume that~2014 =~ 0 and conclude from (4.5)4 that,

if the volume viscosity is zero, the derivative ~P ~V I must also vanish; there-
V-8 E

fore, in this case the difference 8v - ~V|E cannot lead to a linear departure
from the equilibrium pressure. This result recalls an observation by Meix-

Vol. XXI, nO 3 - 1974.



258 I. MÜLLER

ner [5] in linear irreversible thermodynamics where a linear dependence of
the pressure on an internal variable is linked to the volume viscosity.
At least in principle it is possible by an appropriate approximation

scheme to find the coefficients in the equations (4.8) from the kinetic
theory of gases based on the Boltzmann equation for vibrating molecules.
Some discussion of this topic and references to relevant papers can be found
in [6].
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