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ABSTRACT. - The mass perturbation yields a new construction for
Even + Linear quantum field models. For rp4 models, the Schwin-

ger functions are differentiable in the parameter 6 = 5y~, in the single
phase region, and are continuous ac. For the Isingd model, d &#x3E;_ 2
classical bounds on the critical exponents, e. g. 1  y  2v, are a conse-
quence of an Ornstein-Zernike type upper bound on the two point function.

1. INTRODUCTION

For certain critical values of the parameters, the Schwinger functions of
quantum field theory or correlation functions of statistical mechanics are
expected to exhibit nonexponential decay,
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110 J. GLIMM AND A. JAFFE

where 0 ~ ~ ~ 2 and with the result that the corresponding integrated
quantities, for example the susceptibility,

become infinite. Let x) denote the dependence of the n-point Schwin-
ger function in an even model on the mass perturbation

An elementary application of Griffiths’ inequalities gives three ranges of
parameter values as follows: a  y~ defines a multiple phase theory,
~  r  ~~ defines a zero mass (critical) theory, and ~~  6 defines a
positive mass, single phase theory. It is expected that o-J’ = ~ = cr~;
however in some cases, (Jc may not define a zero mass theory, see chapter 2.
As J - + oo, the limit S~(o-,~)-~0, ~ ~ 1, follows from the cluster

expansion [15] [16]. Callan and Symanzik, see [2] [29], propose the mass
perturbation, as in the formula

for the study of critical phenomena. In fact with g denoting the physical
charge, hypotheses e. g. on

near 6 = lead to the scaling law and calculation of critical exponents
in terms of e. g. ~3’ (g~), see [3] [24].

In this paper, we show that the derivatives in ( 1.1 ) exist for cp4 models in
the single phase region, as a consequence of the Lebowitz inequalities [12].
The Lebowitz inequalities dominate (}s(n) by a sum of products of two
point functions,

see chapter 3.

2. CONSTRUCTION
OF THE p = EVEN - 03C6 MODELS

We give a new construction of the J = Even + Linear model in two
dimensions. We start from a polynomial ~ with a sufficiently large bare
mass, so that it yields a Wightman theory as a consequence of a convergent
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111ON THE APPROACH TO THE CRITICAL POINT

cluster expansion [15] [16]. We study the associated Schwinger functions

under a two parameter family of perturbations, ~ of the 

Using a Griffiths inequality, we show that for J  0 and jM &#x3E; 0, the Schwin-

ger functions converge monotonically to Schwinger functions for an Oster-
walder-Schrader theory [23], with the possible exception of clustering. In
the case of mixed phases, the decomposition into pure phases satisfying all
the Osterwalder-Schrader axioms is given in [1] [5]. Each pure phase then
gives rise to a Wightman theory.
We consider the perturbation for the action,

where /1, - a &#x3E;_ 0, and where A is a bounded space-time region with volume
I A L We suppose that the linear term in ~ has a nonpositive coeffi-
cient.

PROPOSITION 2.1. - Under the perturbation 5V, the ~(~p)2 Schwinger
functions increase monotonically in - a, /1, A I.
~roof [18]. By the first Griffiths inequality, 0, and by the

second Griffiths inequality

For the lattice approximation to field theory, the Griffiths inequalities
follow from [6], for p = even - &#x3E; 0. These inequalities follow in
field theory from convergence of the lattice approximation ([18] for 
[25] for ~). Here we note the Wick ordering constant cancels between the
two terms on the right of (2 . 2). This proves that increases monotonically
in - 7, ~ J. The proof of monotonicity in is similar.
We remark that the Schwinger functions are uniformly bounded in A;,

6, and ju, so long as u and  remain bounded (This is a consequence of
Hamiltonian cp-bounds [8]. See Frohlich [5] for the translation of these
bounds to the Schwinger functions). Hence the Schwinger functions converge
as I Ai -~ oo, or &#x3E; - oo, and  oo. Clearly the limiting
Schwinger functions are Euclidean covariant, and the remaining Osterwalder-
Schrader axioms (except clustering) follow from the properties of the

approximate Schwinger functions.

THEOREM 2.2. - For each polynomial with a convergent cluster
expansion, we obtain a two parameter family of (possibly mixed phase)
Osterwalder-Schrader theories, with Schwinger functions St"~(~, X).
Vol. XXII, no 2 - 1975.



112 J. GLIMM AND A. JAFFE

Each X)} can be decomposed into a direct integral of
pure phases, with each component an Osterwalder-Schrader theory.

REMARK 2 . 3. - We note that the theories X) are uniquely
defined by the bare parameters, together with the bare mass. Thus with
cr;  0, jM; &#x3E; 0, we can add successively the perturbations

taking the limit Ai 7’ R2 in any order, and obtain S~n~(~, p; X), where
or = Ecri, and Jl = The fact that the limit S~n~(6, f1; X) is independent
of the order in which the perturbations are added has the following inter-
pretation. If a phase transition occurs at the parameter values u, p, we can
regard p; X) as defined by a 6Vi i perturbation, starting from the
boundary conditions S~n~(Q~ ~~, X), where = and = ~~ # .

Since It; X) is independent of the order in which the 6V; perturba-
tions are added, the various boundary conditions 7~, define the same

theory. Allowing for an infinite series 0" j, we see that

Because of the possibility of phase transitions, the iterated limits with
some or all 0 may not coincide with the ~; X). In fact the iterated
limits with each 0 are always defined (in any order) by monotonicity,
and should provide a general set of boundary conditions. In particular,
for cp4, both pure phases as well as the even mixture could be constructed by
this method. From this point of view, the construction of Theorem 2 . 2 with
a single 5V perturbation could be called weak coupling boundary conditions.

REMARK 2.4. - For cp6 and higher order theories, it is possible that
curves of phase transitions can occur in the u, /1 plane for /1 # 0. Because
the above iterated limits coincide, any such curve in the Jl &#x3E; 0 half plane
must have a positive slope in the u, ~u plane, at least in the case of a first
order phase transition with respect to order parameter ( Standard mean

field approximations suggest that there should be a phase transition only
at  = 0 if the 03C66, ... coefficients in an even J are fixed and o- « 0.
This picture also suggests that the curves for /1 &#x3E; 0 or /1  0 move in toward

and meet the ~u = 0 line as ff decreases. It is consistent with this picture that

- 7~ (as defined in chapter 3) could give the value of u for which two
such curves meet the /1 = 0 line. In this case it is reasonable to suppose that

&#x3E; O. See figure 1. The variation of the ~p4 and higher coefficients is
expected to lead to tricritical points, see [26]. There heuristic calculations
indicate classical tricritical exponents for d = 3, in contrast to an ordinary
critical point.
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113ON THE APPROACH TO THE CRITICAL POINT

FIG. 1. - Postulated phase transition curves for rp6 + models, ~ ~ 0.

REMARK 2.5. - The above construction (weak coupling boundary
conditions) coincides with the theory defined by Dirichlet boundary data.
In fact if the weakly coupled ~(~p)2 theory defined above by a cluster expan-
sion has Dirichlet data on the boundary of a region Ao, then is mono-

tone increasing in Ao. The limits Ao / R2, A1/ R2, A2/ R2 may be
taken in any order. With Ao / R2 first, we have weak boundary
conditions, since the cluster expansion defines a theory which is independent
of boundary conditions. With Ao = Ai = A2 / R2, we have the conven-
tional Dirichlet theory.
The weak coupling boundary conditions also coincide with free boundary

data, provided only that mo » 1 and that the space cutoff in the mass term

-r 1 f 2: dx is removed after the space cutoff in the other terms

of HI = j It follows that the estimates of [8], established for the

C*-algebra construction of field theory [7], also have consequences
for the theory constructed here; see section 5. An extensive analysis of
even boundary conditions is given in [19]. It is an open question whether
the periodic mass converges in the infinite volume limit to the mass of the
infinite volume theory. A positive answer to this question would show that
for qJ4, m(03C3)~ = 0 as 03C3 ~ 03C3c.

3. THE CRITICAL POINT IN EVEN MODELS

The variation of the mass parameter a in an even model (see chap-
ters 1, 2) yields three characteristic intervals :

a) a single phase interval (7~, oo~,
b) a critical interval (y~ r~),
c) a multiple phase interval ( - oo, y~) with symmetry breaking.
The endpoints y~ may also be included in the intervals a) c).
We let J1 = 0, and let

Vol. XXII, n° 2 - 1975. 9



114 J. GLIMM AND A. JAFFE

We define as the exponential decay rate x) - M(a)2. Consider
the two conditions,

(3 .1 ) m(~) &#x3E; 0

(3.2) M(y)=0.

DEFINITION 3.1. - Let 03C3+c be the infimum of the values of 03C3 satisfying
both (3 .1 ) and (3 . 2). Let 03C3-c be the supremum of the values of 03C3 which
violate (3.2).

REMARK 3 . 2. - With the above definitions :

(i) 03C3-c ~ u:  ~.

(ii) On ( - oo, (1;), (3 . 2) is violated.
(iii) On (y~, (3 . 2) holds, but m = 0.
(iv) On both (3 .1 ) and (3 . 2) hold.

By scaling, (7 2014~ + oo is the weak coupling limit. For weak coupling
the cluster expansion [15] [16] yields (3 .1 ) and (3.2), so 7~  oo. The

remaining statements follow by the monotone decrease of S(2)(X; u) in oB
The bound (  oo is announced in [4] ; see also [5].

THEOREM 3 . 3. 2014 Let  = 0. Then is continuous on (03C3+c, oo) at all
points of continuity of S(2)( a; x).

THEOREM 3.4. - Let J1 = 0, and suppose (3.2) holds for T = Then

~((r) B as a % 
’ 

.

THEOREM 3 . 5. 2014 Let  = 0 and suppose m(6) -H 0 03C3+c. Then (3 .2)
holds for J = and so as (7 B 

’

REMARK 3 . 6. - Assuming ~p3 to be a Wightman theory, = 0. This

follows from the fact that S2(U; x) _ I x ~ -1. Thus ~(~).

REMARK 3 . 7. - See Figure 1. In that case, the limit 7c should yield
the pure phase associated with = 0, but with &#x3E; 0.

REMARK 3.8. - critical theories, f. e. m = 0 = M, are not scale
invariant. The continuum of such theories is parameterized by a scale length,
see ([16], p. 155). .

Proof of Theorems 3.3-3.5. - Since 8(2) is monotone decreasing for
J E ( - oo, oo), and continuous from above, it follows that m(u) is monotone
increasing on (y~, If o-o satisfies (3 . 2), then 7o,

Annales de l’Institut Henri Poincaré - Section A



115ON THE APPROACH TO THE CRITICAL POINT

for the exponential decay rate of S(2) defines This proves Theorem 3 . 4.

The same argument applied to convergence from below completes the proof
of Theorem 3 . 3. Theorem 3 . 5 follows from the observation that if m -H 0,
then S(2) has a uniform exponential decay as (7 B cr~.

THEOREM 3 . 9. - For a theory with  = 0, the derivatives 
exist on oo), and are bounded by (1.2). Furthermore 
exists, where Z(6, f ) _ ~ ), and f ILp « 1.

Proof. - We use the Lebowitz inequalities

where X is a subset of U, see [12, eq. 5]. By induction, the right side of (3 . 3)
can be bounded by a sum of products of two point functions of the stated
form. The sum in ( 1. 2) ranges over the  (n + I) ! terms which arise from
this bound. The inductive hypothesis we use is the following: S~2n~ is bounded
by a sum of at most (2n - 1) ! products of n two point functions.
We first differentiate with respect to a change in J in a finite volume A.

By Remark 2. 3, with ~6 _ 0, -

where S(s, A) has a mass perturbation 7 in all of R2, and a mass perturba-
tion s - 6, 6J  s - 6  0, in A. We substitute (3 . 3) and (1. 2) as an upper
bound for the integrand. By the Lebesgue monotone convergence theorem,
we may take the limit A - oo under the integral sign. Convergence of the z
integration follows from the positive mass and exponential decay of S(2).
The derivative of Z(u,f) exists by summation of the exponential series.

REMARK 3 .10. The existence of the derivatives of the connected Eucli-
dean Green’s functions = G(n)(x) follows from this result. The deri-
vative is bounded in the norms of [9].

THEOREM 3.11. - For a theory with p = 0, the Euclidean vertex
functions have bounded derivatives on the interval

(~ ~).
Proof - By the definition of the in terms of the G(n)(x) and

r(2) = - G(2) -1, and Remark 3 .10, it is sufficient to prove the boundedness
of as a map from H1 to H_ 1. By definition,

Vol. XXII, n° 2 - 1975.
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Since r is a bounded transformation from Hi to we need only show
that is bounded from H_1 1 to H1. However, as in (1. 2) or [11],

For ~ E (~~ , co), we have &#x3E; 0, so the Fourier transform G~2~ N (p) is
bounded by m(a)-2. Since G~2~(x) is bounded from H_1 to H1, it follows
that G(2) *G(2) is also. Hence so is by (3 . 4).

4. THE ISING MODEL CRITICAL POINT

In this section we obtain bounds on critical exponents in Ising models.
The analysis of Section 3 may also be applied to the Ising model, with
P / ~~ replacing 7 B The bound on by a product of two point
functions is known [20]. In our ’analysis of the Ising model we assume an
Ornstein-Zernike upper bound on the two point function,

where the constant is independent of 03B2 and where m = 03B6-1 is the inverse
correlation length. In field theory, (4.1) follows from the Lehmann spectral
formula. From this hypothesis, we have the bound 11 &#x3E; 0 on the anomalous
dimension. We now use (4 .1 ) to derive other bounds on critical exponents.

THEOREM 4.1.2014 Assume the bound (4.1). Then:

(a) For the ferromagnetic Ising model with fl  2,

(b) Assuming the existence of critical exponents, they satisfy

REMARK 4.2. - The inequality

also follows by slight modification of [11], using a transfer matrix forma-
lism [22]. The bounds (4.1-6) hold for a ~p4 field theory.

Annales de l’Institut Henri Poincaré - Section A



117ON THE APPROACH TO THE CRITICAL POINT

Proof - The inequality (4 . 2) follows as in [11 ], and yields 1 ~ y. Combi-
ned with (4.1) this yields (4. 3). The inequalities (4.4) and (4. 5) are a conse-
quence of (4.1) and the bounds of [13].

5. PRESERVATION OF ESTIMATES

In this section, we sketch how to transfer uniform estimates, e. g. estimates
of the form

const.

established for V  oo, to the infinite volume limit. This justifies the state-
ment in Remark 2. 5 that the Hamiltonian estimates [8] can be used in the
infinite volume limit with weak coupling boundary conditions.
We are concerned with perturbations of the form

with j  deg J = d, with suppt. [ - a, a], and with hj E see [5].
In case j = d, we also require ~hj~~ small. We also introduce the mass
perturbation

The estimates will be formulated in semigroup language, because the
properties [5] of

permit control of the semigroups without considering questions of operator
domains. We use the path space notation implicit in the fact that the theories
constructed here are Osterwalder-Schrader reconstructions [23].

THEOREM 5.1. - The Feynman-Kac density

defines a semigroup on the physical Hilbert space 5i.

Proof - This statement follows by limits from the approximate theories,
given the convergence of the weak coupling Schwinger functions with ~p’
vertices, and the uniform bounds on the analytic functions (5.3).

In particular, with b and a fixed, the bounds of [8] are transfered into
the weak coupling infinite volume limit by the argument of this section. See
Remark 2.9.
The semigroup of Theorem 5.1 will be called exp [- tH(o-, j)]. We identify

Vol. XXII, nO 2 - 1975.



118 J. GLIMM AND A. JAFFE

on the domain

where ~ is a polynomial in fields and Q is the ground state of H. By the
reconstruction theorem [23]. ~ ~ D(H) and by the cluster expansion
~ c: D(B2) n D(Aj). The limits of the difference quotients from finite
volume then establish (5.4) on ~ x ~ and hence by the above domain
inclusions (5.4) holds on ~. In the case of the mass perturbation,
H + B2, (5 . 4) extends to D(H) x D(H) by Spencer’s local NT estimate [28].
The fact that allows the transfer of the first order estimate
on NT,loc to the infinite volume limit [1]. Let

(5 . 5) 5E(~ ~ ~,) = - In II exp [- j)] ~~ ,
(5. 6) 5E(~ b) = 5E(~ b, ø) = inf spect. (H + B2).
We normalize the Wick ordering so that

with expectations taken in the weak coupling physical Hilbert space. Then
( : ~p’ : ~ = 0, with the standard definition of Wick order. The absence of
domain difficulties follows from the cluster expansion, see [27].

Let 6E*(J, b, hj) be the lim sup of the finite volume (weak coupling)
approximates to 5E(cr, b, Then

(5.8) - ~E  -5E~

as in the proof of Theorem 5.1. Our main result is

THEOREM 5 . 2. - With constants uniform in b,

LEMMA 5.3.

Proof. Let 03C8 be a bounded function on path space, measurable with
respect to the 6-algebra generated by ~(jc, t) fort &#x3E; 0, let e denote reflection
about t = 0, and let # - denote a time translation. Then

- 5E(o-, b, hi) = sup lim T-1 In ( ~, e- TH(6,~’}~ ~

This completes the proof, since the function Q * 1 is an allowed choice
of gi.

Annales de l’Institut Henri Poincaré - Section A



119ON THE APPROACH TO THE CRITICAL POINT

LEMMA 5 . 4. - - 5E(7, b, hj) is non-negative and convex in u, h J.
Proof - The convexity follows from a Schwarz inequality relative to the

inner product defined by the Euclidean weak coupling measure dq, combined
with Lemma 5.3 - 5E &#x3E; 0 by the normalization ( : = 0.

LEMMA 5. 5. - - b) is convex and monotone increasing, as a func-
tion of b.

Proof. Since - ~E &#x3E;- 0 and - = 0, the derivative d(- 
is non-negative for b = 0. Assuming convexity, the derivative is increasing,
and hence is always non-negative, so - 5E is monotonic increasing. To
prove convexity, we use a Schwarz inequality relative to the Osterwalder-
Schrader inner product defined by a line x = const. Thus

where b = 1 (b’ + b"). Here x = const. determines the choice of b’ and b",
and by varying the constant we obtain an arbitrary division.

Remark. - The lemma applies to any localized perturbation, e. g. B~ + AJ,
so long as each hj is the characteristic function of A2.

Proof of Theorem 5.2. We follow [17], which simplifies the original
method of [8]. It is no loss of generality to assume b &#x3E;- a. As above, we use
a Schwarz inequality relative to the lines x = ± a. For x E [ - a, a] we use
the norm of the semigroup (with x and t interchanged). Since dq is rotation
invariant, it is invariant under rotation by the angle 0 = Tr/2. The vacuum
energy for fixed x is bounded by 0(1)[1 + I h(x) Idld- j]T, where the second
factor contributes for I h large. The factor 0(1) contains the o-dependence.
The bound is linear in T by the linear bound on the vacuum energy in the
volume. Integrating over x, gives 0(T)(a + A and - b, h ~)
- - ~E(6, b) + 0{1)~a + II h~; 
In order to apply Theorem 5 . 2, we let T2 7’ oo, b 7’ oo, where [ - T2, T2]

is the time interval in which B2 is inserted in the path space integral. The
T 2 7’ oo limit is taken first. In this limit, the effect of the perturbation is
estimated using Theorem 5.2. We require,

LEMMA 5.6. - Let Q = 1 and let

H = H + B2 - 5E(~ b).
Then .

Vol. XXII, no 2 - 1975.



120 J. GLIMM AND A. JAFFE

Proof. We let H = By Lemma 5 . 4, 0 = inf suppt. d ( Q )
= inf suppt. d,u~~,).
We consider

Thus

Splitting the integral, ~~0 - + , we find the contribution ~~0~ 1,

and ~ --~ 0. which completes the proof.

By Theorem 5 .1,

where

and

By Theorem 5.2, and Lemma 5.6,

Thus by Lemma 5.3,

in the limit b = oo . Thus we have proved

THEOREM 5.7. - Let H((7) be the even + linear Hamiltonian with
weak coupling boundary conditions given by the mass perturbation

Annales de l’Institut Henri Poincaré - Section A



121ON THE APPROACH TO THE CRITICAL POINT

REMARK 5.8. - The same argument may be used with the Hamiltonian
for a = even + linear Hamiltonian with weak coupling boun-

dary conditions given by the perturbation~ : ø2 : dx - p with

- 6, 0. For a general ~(~)2 theory (~ 7~ even + linear), Theorem 5 . 7
remains valid, but in this case the b = oo infinite volume limit is defined by
convergent subsequences.

REMARK 5.9. - The same argument can be used to obtain semigroup
estimates of the type (5.12-13) for infinite volume, weakly coupled ~(~)2
models. In this case, the convergence of the Schwinger functions as T -~ 00
follows from the cluster expansion, rather than monotonicity.

REMARK 5.10. - We improve on (5.13), in order to allow perturbations
A~ and test functions h J which do not have compact support. Using the
bounds (5.12)-(5.13), valid for b  oo, we have

Since - ~E is convex in h j and vanishes for h j = 0, the above inequality
implies

00

We write ~= ~ and use convexity again to obtain the bound
n==2014oo

for some r. This bound holds uniformly for b  00 and for any h j with

REFERENCES

[1] O. BRATELLI, Conservation of estimates in quantum field theory. Comm. Pure and
Appl. Math., t. 25, 1972, p. 759-779.

[2] C. CALLAN, Broken scale invariance in scalar field theory. Phys. Rev., D2, 1970,
p. 1541-1547.

[3] S. COLEMAN, Scaling Anomalies, in Developments in High Energy Physics, Academic
Press, New York, 1972, p. 280-296.

[4] R. DOBRUSHIN and R. MINLOS, Construction of a one dimensional quantum field via
a continuous Markov field. Funct. Anal. and its Appl., t. 7, 1973, p. 324-325 (English
transl.).

[5] J. FRÖHLICH, Schwinger functions and their generating functionals I, II. Helv. Phys.
Acta, and Adv. in Mathematics.

Vol. XXII, na 2 - 1975.



122 J. GLIMM AND A. JAFFE

[6] J. GINIBRE, General formulation of Griffiths’ inequalities. Commun. Math. Phys.,
t. 16, 1970, p. 310-328.

[7] J. GLIMM and A. JAFFE, The (03BB03C64)2 quantum field theory without cutoffs III. The
physical vacuum. Acta Math., t. 125, 1970, p. 203-261.

[8] J. GLIMM and A. JAFFE, The 03BB(03C64)2 quantum field theory IV. Perturbations of the
Hamiltonian. J. Math. Phys., t. 13, 1972, p. 1558-1584.

[9] J. GLIMM and A. JAFFE, Entropy principle for vertex functions in quantum field
models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 1-26.

[10] J. GLIMM and A. JAFFE, Critical point dominance in quantum field models. Ann.
Institut Henri Poincaré, t. 21, 1974, p. 27-41.

[11] J. GLIMM and A. JAFFE, 03C642 quantum field model in the single-phase region: Differen-
tiability of the mass and bounds on critical exponents, Phys. Rev., D15, to appear.

[12] J. GLIMM and A. JAFFE, A remark on the existence of 03C644. Phys. Rev. Lett., t. 33, 1974,
p. 440-442.

[13] J. GLIMM and A. JAFFE, Absolute bounds on vertices and couplings. Ann. Institut
Henri Poincaré, t. 22, 1975, p. 1-13.

[14] J. GLIMM and A. JAFFE, Two and three body equations in quantum field models.
Commun. Math. Phys., to appear.

[15] J. GLIMM, A. JAFFE and T. SPENCER, The Wightman axioms and particle structure
in the P(03C6)2 quantum field model. Ann. Math., t. 100, 1974, p. 585-632.

[16] J. GLIMM, A. JAFFE and T. SPENCER, The particle structure of the weakly coupled
P(03C6)2 models and other applications of high temperature expansions, in: Construc-
tive Quantum Field Theory, G. Velo and A. S. Wightman (eds.), Springer-Verlag,
Berlin, 1973.

[17] F. GUERRA, L. ROSEN and B. SIMON, Nelson’s Symmetry and the infinite volume
behavior of the vacuum in P(03C6)2. Commun. Math. Phys., t. 27, 1972, p. 10-22.

[18] F. GUERRA, L. ROSEN and B. SIMON, The P(03C6)2 Euclidean quantum field theory as
classical statistical mechanics. Ann. Math., t. 101, 1975, p. 111-259.

[19] F. GUERRA, L. ROSEN and B. SIMON, The pressure is independent of the boundary
conditions, preprint.

[20] J. LEBOWITZ, More inequalities for Ising ferromagnets. Phys. Rev., B5, 1972, p. 2538-
2541.

[21] J. LEBOWITZ, GHS and other inequalities. Commun. Math. Phys., t. 35, 1974, p. 87-92.
[22] R. MINLOS and Ya. SINAI, Investigation of the spectra of stochastic operators arising

in lattice models of a gas. Theoretical and Math. Phys., t. 2, 1970, p. 167-176

(English transl.).
[23] K. OSTERWALDER and R. SCHRADER, Axioms for Euclidean Green’s functions I, II.

Commun. Math. Phys., t. 31, 1973, p. 83-113 and Commun. Math. Phys.
[24] G. PARISI, Field theory approach to second order phase transitions in two and three

dimensional systems. 1973 Cargèse lectures.
[25] Y. PARK, Lattice approximation of the (03C64 2014 03C6)3 field theory in a finite volume, pre-

print.
[26] E. RIEDEL and F. WEGNER, Tricritical exponents and scaling fields. Phys. Rev. Lett.,

t. 29, 1972, p. 349-352.
[27] R. SCHRADER, Local operator products and field equations in P(03C6)2 theories.
[28] T. SPENCER, Perturbation of the P(03C6)2 quantum field Hamiltonian. J. Math. Phys.,

t. 14, 1973, p. 823-828.
[29] K. SYMANZIK, Small distance behavior in field theory and power counting. Commun.

Math. Phys., t. 18, 1970, p. 227-246.
(Manuscrit reçu le 2 septembre 1974)

Annales de l’Institut Henri Poincaré - Section A


