Annales de l'I. H. P., section A

A. Gheorghe D. B.ION
 El. Mihul
 On relativistic multiparticle kinematics in invariant variables

Annales de l'I. H. P., section A, tome 22, n 2 (1975), p. 131-142
http://www.numdam.org/item?id=AIHPA_1975__22_2_131_0
© Gauthier-Villars, 1975, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On relativistic multiparticle kinematics in invariant variables

by
A. GHEORGHE (*), D. B. ION (*) and El. MIHUL (${ }^{*}$)
Joint Institute for Nuclear Research, Dubna, U. S. S. R.

Abstract. - A complete system of algebraic constraints on the Gram matrices of four-momenta and an analytic reconstruction of any finite set of four-momenta from their Gram matrix are established. The physical regions and phase-space volume elements in general invariant variables of both exclusive and inclusive multiparticle processes are also given.

1. INTRODUCTION

The purpose of this work is to extend some previous analyses [1]-[6] of relativistic multiparticle kinematics in invariant variables. The present approach is essentially inspired by certain old algebraic results of Jacobi, Hildenfinger, Frobenius, Gauss and Weyl.

The paper is organized as follows. In Section 2, we present two kinematical rules for the Gram matrices of finite sets of four-momenta. The first rule gives a complete system of Gram determinantal equalities and inequalities which guarantees that a real symmetric $n \times n$ matrix is a Gram matrix of n four-momenta. The second rule represents a concrete analytic reconstruction of any finite set of four-momenta from their Gram matrix.
In Section 3, we apply the above kinematical rules to a description of the physical regions of both exclusive and inclusive multiparticle processes in general invariant variables. As applied to this description, some algebraic and geometric properties of the considered physical regions are discussed.

[^0]On the other hand, a convenient unified scheme for finding the ranges of several useful sets of invariant variables is established and the phase-space volume elements are determined with respect to this scheme.

2. KINEMATICAL RULES FOR GRAM MATRICES

We first establish a complete system of algebraic constraints on the Gram matrices of n four-momenta.

It is convenient to start with some notations. The four-momentum q is written as $q=\left(q^{0}, \vec{q}\right)=\left(q^{0}, q^{1}, q^{2}, q^{3}\right)$. The Minkowski scalar product of two four-momenta q and q^{\prime} is given by $q q^{\prime}=q^{0} q^{\prime 0}-\vec{q} \vec{q} q^{\prime}$ (with the notation $(q)^{2}=q q$ for the Lorentz square of q).

The Gram matrix of the four-momenta q_{1}, \ldots, q_{n} is defined by

$$
\mathrm{U}=\left(\begin{array}{cccc}
\left(q_{1}\right)^{2} & q_{1} q_{2} & \ldots & q_{1} q_{n} \tag{1}\\
q_{1} q_{2} & \left(q_{2}\right)^{2} & \ldots & q_{2} q_{n} \\
\vdots & \vdots & & \vdots \\
q_{1} q_{n} & q_{2} q_{n} & \ldots & \left(q_{n}\right)^{2}
\end{array}\right)
$$

If $\mathrm{U}=\left(u_{i j}\right)$ is a real symmetric $n \times n$ matrix, the minor of U with all rows and columns deleted except for the i_{1}, \ldots, i_{h} th lines and j_{1}, \ldots, j_{h} th columns is denoted by

$$
\begin{equation*}
\mathrm{G}_{i_{1} \ldots i_{h}}^{j_{1} \ldots j_{h}}(\mathrm{U})=\operatorname{det}\left(u_{i j}\right)_{i=i_{1}, \ldots, i_{h} ; j=j_{1}, \ldots, j_{h}} . \tag{2}
\end{equation*}
$$

We also use the following notations:

$$
\begin{align*}
\mathrm{G}_{i_{1} \ldots i_{h}}(\mathrm{U}) & =\mathrm{G}_{i_{1} \ldots i_{h}}^{i_{1} \ldots i_{h}}(\mathrm{U}) \tag{3}\\
\sigma_{i_{1} \ldots i_{h}}(\mathrm{U}) & =\operatorname{sgn}(-1)^{h-1} \mathrm{G}_{i_{1} \ldots i_{h}}(\mathrm{U}), \tag{4}
\end{align*}
$$

where, for any real number $\alpha, \operatorname{sgn} \alpha=1$ if $\alpha>0, \operatorname{sgn} \alpha=0$ if $\alpha=0$, and $\operatorname{sgn} \alpha=-1$ if $\alpha<0$.

Let us now state the following rule:
Rule 1. - Let U be a real symmetric $n \times n$ matrix. Then the following statements are equivalent:
a) there exist n four-momenta such that U is their Gram matrix;
b) U has at most one positive eigenvalue and at most three negative eigenvalues;
c) $r=$ rank $\mathrm{U} \leqslant 4$ and in the case $r>0$ there exist some indices $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$ such that $\sigma_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$ and

$$
\begin{gather*}
\sigma_{i_{1} \ldots i_{h}}(\mathrm{U}) \leqslant \sigma_{i_{1} \ldots i_{h+1}}(\mathrm{U}), 1 \leqslant h<r, \tag{5}\\
\sigma_{i_{1} i_{2} i_{3} i_{4}}(\mathrm{U})=1 \quad \text { if } \quad r=4, \tag{6}\\
\sigma_{i_{2}}(\mathrm{U})=-1 \quad \text { if } \quad r=4, \quad \sigma_{i_{1} \ldots i_{h}}(\mathrm{U})=0, \quad h=1,2,3 . \tag{7}
\end{gather*}
$$

Proof. - Several parts of the above rule are well-known [5]. Suppose that c) holds. Let v denote the number of all indices h such that $\sigma_{i_{1} \ldots i_{h}}(U)=0$; $1 \leqslant h<r$. According to a remark of Poon [5], the implication c) $\Rightarrow b$) represents Jacobi's rule if $v=0$ and Hildenfinger's rule if $v=1$. Moreover, we recall that the implication $c) \Rightarrow b$) for $v=2$ represents a rule of Frobenius (for Jacobi's, Hildenfinger's and Frobenius' rules see the full section 3 from [7], $\mathrm{Ch} . \mathrm{X}$). The only remaining case is $v=3$. Using (6) and the conditions of (7), we obtain $\sigma_{i_{2}}(\mathrm{U})=\sigma_{i_{2} i_{3}}(\mathrm{U})=-1$ and $\sigma_{i_{1} i_{2} i_{3} i_{4}}(\mathrm{U})=1$. Then (5) holds if the indices $i_{1}, i_{2}, i_{3}, i_{4}$ are replaced by $i_{2}, i_{3}, i_{4}, i_{1}$, respectively, and the case $v=3$ is reduced to the cases $v=0$ and $v=1$. Hence c) implies b).

Suppose that b) holds. Then it follows from the canonical diagonalization of a real symmetric matrix that there exist a real orthogonal $n \times n$ matrix $\Omega=\left(\omega_{i j}\right)$ and a real diagonal $n \times n$ matrix $\mathrm{D}=\left(d_{i j}\right)$ such that $\mathrm{U}=\Omega \mathrm{D} \Omega^{t}$, $d_{11} \geqslant 0, d_{i i} \leqslant 0, d_{j j}=0,2 \leqslant i \leqslant 4, j>4$ (see, for example, [7], Ch. X, § 5). The symbol t denotes the matric transpose. Let us denote $q_{i}^{j-1}=\omega_{i j}\left|d_{j j}\right|^{1 / 2}, i=1, \ldots, n ; j=1,2,3,4$. Then U is the Gram matrix of the four-momenta q_{1}, \ldots, q_{n}. Hence b) implies a).

In order to prove the implication $a) \Rightarrow c$), we introduce certain orthogonal bases for the linear subspaces of the Minkowski space. The basis $\left\{e_{1}, \ldots, e_{d}\right\}$ is called a standard basis if the four-momenta e_{1}, \ldots, e_{d} satisfy the following relations:

$$
e_{h^{\prime}} e_{h^{\prime}}=\left\{\begin{array}{rll}
\varepsilon & \text { if } & h=h^{\prime}=1 \tag{8}\\
-1 & \text { if } & h=h^{\prime}>1 \\
0 & \text { if } & h \neq h^{\prime}
\end{array}\right.
$$

where $h, h^{\prime}=1, \ldots, d$ and $\varepsilon \in\{-1,0,1\}$. There exists a standard basis for any nonzero linear subspace N of the Minkowski space. Indeed, if N is d-dimensional, then there exists an orthogonal basis $\left\{f_{1}, \ldots, f_{d}\right\}$ for N such that $\left(f_{h}\right)^{2} \geqslant\left(f_{h+1}\right)^{2}, h=1, \ldots, d-1[8]$. It is easy to see that if two fourmomenta are linearly independent and their scalar product is equal to zero, then at least one of these four-momenta has a strictly negative Lorentz square. Then we can define $e_{1}=f_{1}$ if $\left(f_{1}\right)^{2}=0$ and $e_{h}=\left|\left(f_{h}\right)^{2}\right|^{-1 / 2} f_{h}$ if either $h>1$ or $h=1$ and $\left(f_{1}\right)^{2} \neq 0$. Therefore $\left\{e_{1}, \ldots, e_{d}\right\}$ is a standard basis for N . Notice that if $\varepsilon \leqslant 0$, then $(q)^{2} \leqslant 0$ for any $q \in \mathrm{~N}$. Hence $\varepsilon=1$ when $d=4$ (in this case N is the whole Minkowski space of four-momenta). It is clear that $d \leqslant 4$.

Suppose that U is the Gram matrix of the four-momenta q_{1}, \ldots, q_{n}. Let N be the linear space spanned by the four-momenta $q_{i_{1}}, \ldots, q_{i_{h}}$, where $i_{1}, \ldots, i_{h} \in\{1, \ldots, n\}$. If $q_{1}=\ldots=q_{n}=0$, then $\mathrm{U}=0$ and it is obvious that the implication $a) \Rightarrow c$) is trivial. Therefore we can suppose that $d>0$. Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be a standard basis for N . We introduce the $d \times d$ matrix Vol. XXII, no 2-1975.
$\mathrm{V}=\left(e_{j} e_{j^{\prime}}\right), 1 \leqslant j, j^{\prime} \leqslant d$, and the $h \times d$ matrix $\mathrm{T}=\left(t_{i_{k} j}\right), 1 \leqslant k \leqslant h$, $1 \leqslant j \leqslant d$, defined by

$$
\begin{equation*}
q_{i}=\sum_{j=1}^{d} t_{i j} e_{j}, \quad i=i_{1}, \ldots, i_{h} \tag{9}
\end{equation*}
$$

The Gram matrix of the four-momenta $q_{i_{1}}, \ldots, q_{i_{h}}$ is $\mathrm{U}^{\prime}=\mathrm{TVT}^{t}$. If $q_{i_{1}}, \ldots, q_{i_{h}}$ are linearly dependent, then it is obvious that $\sigma_{i_{1} \ldots i_{h}}(\mathrm{U})=(-1)^{h-1} \operatorname{det} \mathrm{U}^{\prime}=0$. Moreover, we have rank $\mathrm{U}^{\prime} \leqslant 4$ and, in particular, $r=\operatorname{rank} \mathrm{U} \leqslant d \leqslant 4$. If $q_{i_{1}}, \ldots, q_{i_{h}}$ are linearly independent, then $h=d$, det $\mathrm{T} \neq 0$, and (8) implies $\sigma_{i_{1} \ldots i_{h}}(\mathrm{U})=\left(e_{1}\right)^{2}$. In the case $r=h=4$ one obtains $\sigma_{i_{1} i_{2} i_{3} i_{4}}(\mathrm{U})=\operatorname{det} \mathrm{V}=1$ and (6) holds. If $r>1$, we choose $i_{1}, \ldots, i_{r^{\prime}} \in\{1, \ldots, n\}, 1<r^{\prime} \leqslant r$ such that $\sigma_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$ and consider that $h \in\left\{1, \ldots, r^{\prime}-1\right\}$. Then the four-momenta $q_{i_{1}}, \ldots, q_{i_{r}}$, are linearly independent and the linear space N^{\prime} spanned by $q_{i_{1}}, \ldots, q_{i_{h_{r 1}}}$ admits a standard basis $\left\{e_{1}^{\prime}, \ldots, e_{h+1}^{\prime}\right\}$ with $\sigma_{i_{1} \ldots i_{h+1}}(\mathrm{U})=\left(e_{1}^{\prime}\right)^{2}$. Since N is a subspace of $\mathrm{N}^{\prime}, e_{1}$ is a linear combination of $e_{1}^{\prime}, \ldots, e_{h+1}^{\prime}$ and (8) implies $\left(e_{1}^{\prime}\right)^{2} \geqslant\left(e_{1}\right)^{2}$. Hence (5) holds for the choice $r=r^{\prime}$.

Suppose next that $r=r^{\prime}>2$ and $\sigma_{i_{1}}(\mathrm{U})=\sigma_{i_{1} i_{2}}(\mathrm{U})=0$. It is clear that $\left(q_{i_{1}}\right)^{2}=q_{i_{1}} q_{i_{2}}=0$. Since $q_{i_{1}}$ and $q_{i_{2}}$ are linearly independent, we have $\left(q_{i_{2}}\right)^{2}<0$ and (7) also holds. Hence a) implies c) and Rule 1 is proved.

Let I_{n} denote the space of all Gram matrices of n four-momenta. Any Gram matrix \mathbf{U} satisfies both assertions b) and c) of Rule 1. Moreover, it follows from the proof of the implication $a) \Rightarrow c$) that

$$
\begin{equation*}
\sigma_{i_{1} \ldots i_{h}}(\mathrm{U}) \leqslant \sigma_{i_{1} \ldots i_{h+1}}(\mathrm{U}), \quad h=1, \ldots, r^{\prime}-1, \tag{10}
\end{equation*}
$$

for any $i_{1}, \ldots, i_{r^{\prime}} \in\{1, \ldots, n\}$ such that $\sigma_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$.
The space I_{n} is completely defined by the polynomial equalities and inequalities given by (5)-(7) and the condition rank $U \leqslant 4$. If $n>4$, the last condition is equivalent to the following kinematical constraints of Asribekov [2]:

$$
\begin{equation*}
\mathrm{G}_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{j_{1} j_{2} j_{j} j_{S}}(\mathrm{U})=0 \tag{11}
\end{equation*}
$$

where $1 \leqslant i_{1}<\ldots<i_{5} \leqslant n$ and $1 \leqslant j_{1}<\ldots<j_{5} \leqslant n$.
According to a result of Weyl, any identity with respect to the coefficients of U is a consequence of (11) (see, for example, the full section 17 from [9], Ch. II). Moreover, according to a result of Kronecker [10], the condition rank $\mathrm{U}=r$ is equivalent to the following relations:

$$
\begin{equation*}
\sum_{1 \leqslant j_{1}<\ldots<j_{h} \leqslant n} \mathrm{G}_{j_{1} \ldots j_{h}}(\mathrm{U})=0, \quad h=r+1, \ldots, n, \tag{12}
\end{equation*}
$$

for some $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$.

Hence a real symmetric $n \times n$ matrix U which satisfies (12) for $r \leqslant 4$ and the relation $G_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$ for a choice of the indices $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$ is a Gram matrix of n four-momenta if and only if (5), (6), and (7) hold.

We recall that Rule 1 for any Gram matrix with positive diagonal coefficients has been obtained by Omnes [1] and Byers and Yang [3].

The reconstruction of a set of four-momenta from their Gram matrix is given by the following rule:

Rule 2. - Consider a Gram matrix $\mathrm{U} \in \mathrm{I}_{n}$ with rank $\mathrm{U}=r>0$. Then there exists a choice of the indices $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$ such that either $\sigma_{i_{1} \ldots i_{h}}(\mathrm{U}) \neq 0, h=1, \ldots, r$, or there exists $k \in\{1, \ldots, r-1\}$ satisfying the following conditions:

1) $\sigma_{t_{1} \ldots i_{h}}(\mathrm{U})=-1$ if $1 \leqslant h<k$;
2) $\sigma_{i_{1} \ldots i_{h}}(\mathrm{U})=1$ if $k<h \leqslant r$;
3) $\sigma_{i_{1} \ldots i_{k-1} i_{h}}(\mathrm{U})=0$ if $k \leqslant h \leqslant r$;
4) $\mathrm{G}_{i_{1} \ldots i_{k}-1 i_{k}}^{i_{1} \ldots i_{k}}(\mathrm{U}) \neq 0$;
5) $i_{k}<i_{k+1}$ if and only if $(-1)^{k} \mathrm{G}_{i_{1} \ldots i_{k}-1 i_{k}}^{i_{1} \ldots i_{k}}(\mathrm{U})>0$.

Consider an orthogonal $n \times n$ matrix $\widehat{\mathrm{O}}=\left(0_{j j^{\prime}}\right)$ such that either $\widehat{\mathrm{O}}=1$ for $\sigma_{i_{1} \ldots i_{h}}(\mathrm{U}) \neq 0, h=1, \ldots, r$, or
$o_{j j^{\prime}}=\left\{\begin{array}{cl}1 & \text { if } j=j^{\prime} \neq i_{k}, i_{k+1} \\ 0 & \text { if } j \neq j^{\prime} \text { and either } j \neq i_{k}, i_{k+1} \text { or } j^{\prime} \neq i_{k}, i_{k+1} \\ -1 / \sqrt{2} & \text { if } j<j^{\prime} \text { and } j, j^{\prime} \in\left\{i_{k}, i_{k+1}\right\} \\ 1 / \sqrt{2} & \text { if } j \geqslant j^{\prime} \text { and } j, j^{\prime} \in\left\{i_{k}, i_{k+1}\right\}\end{array}\right.$
for $\sigma_{i_{1} \ldots i_{k}}(\mathrm{U})=0$.
Then the matrix $\mathrm{U}^{\prime}=\widehat{\mathrm{O}} \widehat{\mathrm{O}}^{t}$ satisfies the relations $\sigma_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right) \neq 0$, $1 \leqslant h \leqslant r$. Moreover, U is the Gram matrix of the four-momenta q_{1}, \ldots, q_{n} defined by

$$
\begin{gather*}
q_{i}=\sum_{j=1}^{n} o_{j i} q_{j}^{\prime}, i=1, \ldots, n, \tag{14}\\
q_{j}^{\prime \mu_{h}-1}= \tag{15}\\
\left\{\begin{array}{l}
\frac{\sigma_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right) \mathrm{G}_{i_{1} \ldots i_{h-1} i_{h}}^{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right)}{\left|\mathrm{G}_{i_{1} \ldots i_{h-1}-1}\left(\mathrm{U}^{\prime}\right) \mathrm{G}_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right)\right|^{1 / 2}} \text { if } h \leqslant r \\
o \quad i f h>r
\end{array}\right.
\end{gather*}
$$

where $j=1, \ldots, n ; h=1, \ldots, 4$, and the following convention is used: $-\sigma_{i_{1} \ldots i_{h-1}}\left(\mathrm{U}^{\prime}\right)=\mathrm{G}_{i_{1} \ldots i_{h-1}}\left(\mathrm{U}^{\prime}\right)=1$ if $h=1$. Here $\left(\mu_{0} \mu_{1}, \mu_{2}, \mu_{3}\right)$ is a permutation of $(0,1,2,3)$ such that $\mu_{h}=0$ if $\sigma_{i_{1} \ldots i_{h-1}}\left(\mathrm{U}^{\prime}\right) . \sigma_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right)=-1$ and $\mu_{h}<\mu_{h^{\prime}}$ if $h<h^{\prime} ; \mu_{h}, \mu_{h^{\prime}} \neq 0$.

Proof. - Since $r>0$, we can choose the indices $j_{1}, \ldots, j_{r} \in\{1, \ldots, n\}$ such that $\mathrm{G}_{j_{1} \ldots j_{r}}(\mathrm{U}) \neq 0$ and $\sigma_{j_{1} \ldots j_{h^{\prime}}}(\mathrm{U}) \geqslant \sigma_{j_{1} \ldots j_{h}}(\mathrm{U})$ for $h \geqslant h^{\prime}$. We now show that there exists a permutation $\left(i_{1}, \ldots, i_{r}\right)$ of $\left(j_{1}, \ldots, j_{r}\right)$ which satisfies
the conditions of Rule 2. According to Rule $1 c$), the argument divides into two cases:

Case I. - Suppose that $\sigma_{j_{1} \ldots j_{h}}(\mathrm{U}) \neq 0, h=1, \ldots, r$. Then we choose $i_{h}=j_{h}, h=1, \ldots, r$.

Case II. - Suppose that there exists $k \in\{1, \ldots, r-1\}$ such that $\sigma_{j_{1} \ldots j_{h}}(\mathrm{U})=-1$ if $1 \leqslant h<k$ and $\sigma_{j_{1} \ldots j_{k-1} j_{h}}(\mathrm{U})=0$ if $k \leqslant h \leqslant r$. Since $\mathrm{G}_{j_{1} \ldots j_{r}}(\mathrm{U}) \neq 0$ it follows that there exist two indices $h^{\prime}, h^{\prime \prime} \in\{k, \ldots, r\}$
 $h^{\prime}, h^{\prime \prime} \neq h$, and $i_{k}=j_{h^{\prime}}, i_{k+1}=j_{h^{\prime \prime}}$ (resp. $i_{k}=j_{h^{\prime \prime}}, i_{k+1}=j_{h^{\prime}}$) if $(-1)^{k}$. $\mathrm{G}_{j_{1} \ldots j_{k-1} j_{h},}^{j_{1} \ldots j_{k}=1 j_{n}{ }^{\prime}}(\mathrm{U})$ is negative (resp. positive). Note that from the identity $\mathrm{G}_{i_{1} \ldots i_{k-1}}(\mathrm{U}) \mathrm{G}_{i_{1} \ldots i_{k+1}}(\mathrm{U})=\mathrm{G}_{i_{1} \ldots i_{k}}(\mathrm{U}) \mathrm{G}_{i_{1} \ldots i_{k-1} i_{k+1}}(\mathrm{U})-\left[\mathrm{G}_{i_{1} \ldots i_{k-1} i_{k}}^{i_{1} \ldots i_{k-1} i_{k+1}}(\mathrm{U})\right]^{2}$
it follows that $\sigma_{i_{1} \ldots i_{k+1}}(\mathrm{U})=1$. Then (5) implies $\sigma_{i_{1} \ldots i h}(\mathrm{U})=1$ if $k<h \leqslant r$. If k is as in Case II, using (13), we obtain

$$
\begin{align*}
(-1)^{k-1} \mathrm{G}_{i_{1} \ldots j_{k}}\left(\mathrm{U}^{\prime}\right) & =\left|\mathrm{G}_{i_{1} \ldots i_{k-1 i k}}^{i_{1} \ldots i_{k-1} i_{k+1}}(\mathrm{U})\right|, \tag{17}\\
\mathrm{G}_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right) & =\mathrm{G}_{i_{1} \ldots i_{h}}(\mathrm{U}), \quad 1 \leqslant h \leqslant r, \quad h \neq k . \tag{18}
\end{align*}
$$

Therefore $\sigma_{i_{1} \ldots i_{h}}\left(\mathrm{U}^{\prime}\right) \neq 0,1 \leqslant h \leqslant r$. Straightforward computations starting from (15) show that $\mathrm{U}^{\prime}=\left(q_{j}^{\prime} q_{j^{\prime}}^{\prime}\right) ; j, j^{\prime}=1, \ldots, n$ (see, for example, the Gauss algorithm from [7], Ch. II, § 4). Then by (14), we obtain $\mathrm{U}=\left(q_{i} q_{i}{ }^{\prime}\right)$; $i, i^{\prime}=1, \ldots, n$, and Rule 2 is proved.

We remark that the implication $c) \Rightarrow a$) of Rule 1 follows from the proof of Rule 2. Then from the proof of Rule 1 excepting the implication c) $\Rightarrow b$), we obtain a direct proof of Jacobi's Hildenfinger's and Frobenius' rules.

Let $\mathrm{I}_{n r}$ denote the set of all Gram matrices of rank r belonging to I_{n}. Consider the set of all matrices $U \in \mathrm{I}_{n r}$ such that $\mathrm{G}_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$ for a choice of the indices $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$ (in the case $r>0$). Then Rule 2 shows that $\left\{u_{i_{n} j}\right\}, h=1, \ldots, r ; j \in\{1, \ldots, n\} ; j \neq i_{h^{\prime}}$, for $h^{\prime}<h$, is a set of $n r-\frac{1}{2} r(r-1)$ independent kinematical variables with respect to I_{n}. According to (15) and the identities

$$
\begin{equation*}
\left[\mathrm{G}_{i_{1} \ldots i_{r-1} i_{r}}^{i_{1} \ldots i_{r}-1}\left(\mathrm{U}^{\prime}\right)\right]^{2}=\mathrm{G}_{i_{1} \ldots i_{r}}\left(\mathrm{U}^{\prime}\right) \mathrm{G}_{i_{1} \ldots i_{r-1}}\left(\mathrm{U}^{\prime}\right) \tag{19}
\end{equation*}
$$

we can choose the independent variables $u_{j j}, u_{i_{j} j}$ with $h=1, \ldots, r-1$; $j \in\{1, \ldots, n\} ; j \neq i_{h^{\prime}}$, if $h^{\prime} \leqslant h$. But the Gram matrix U can be reconstructed from these variables only if the signs of $\mathrm{G}_{i_{1} \ldots i_{r}-1 i_{r}}^{\left.i_{1} \ldots \mathrm{U}^{\prime}\right)}\left(\mathrm{U}^{\prime}\right), 1 \leqslant j \leqslant n$, $j \neq i_{1}, \ldots, i_{r}$, are known (see also Röhrlich's dichotomy from [4]).

Finally, any representative of a Gram matrix is given by the following completion of Rule 2:

Rule 2^{\prime}. - For any matrix $\mathrm{U} \in \mathrm{I}_{n}$ and four-momenta $q_{1}^{\prime}, \ldots, q_{n}^{\prime}$ such
that U is their Gram matrix, there exists a standard basis $\left\{e_{1}, \ldots, e_{d}\right\}$ such that one of the following decompositions holds :
$q_{i}^{\prime}=\sum_{h=1}^{r} \alpha_{i h} e_{h}, \quad i=1, \ldots, n, \quad r=d$,
$q_{i}^{\prime}=\sum_{h=2}^{r+1} \alpha_{i h} e_{h}+\beta_{i} e_{1}, \quad\left(e_{1}\right)^{2}=0, \quad \sum_{i=1}^{n} \beta_{i}^{2}=1, \quad r=d-1 \leqslant 2$,
where $d(0 \leqslant d \leqslant 4)$ is the dimension of the linear space spanned by $q_{1}^{\prime}, \ldots, q_{n}^{\prime}$; r is the rank of U , each β_{i} is a real number, $\alpha_{i h}=q_{i}^{\mu_{h-1}}$ for $r=d$ and $\alpha_{i h}=q_{i}^{\mu_{h-2}}$ for $r=d-1$ with q_{1}, \ldots, q_{n} given by Rule 2 . The sums from the r. h. s. of (19) and (20) are dropped if $r=0$.

Proof. - We recall a result of Hall and Wightman [10]: if two sets of n four-momenta $\left\{q_{1}, \ldots, q_{n}\right\}$ and $\left\{q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right\}$ have the same Gram matrix U, then there exist a Lorentz transformation Λ, some real numbers $\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}$ and a four-momentum ω such that

$$
\begin{equation*}
q_{i}^{\prime}=\Lambda q_{i}+\beta_{i}^{\prime} \omega, \quad(\omega)^{2}=\omega\left(\Lambda q_{i}\right)=0, \quad i=1, \ldots, n \tag{22}
\end{equation*}
$$

Here Λ is identified to the matrix $\left(\Lambda_{v}^{\mu}\right), 0 \leqslant \mu, v \leqslant 3$, such that the fourvectors $f_{h}=\left(\Lambda_{\mu_{h-1}}^{0}, \Lambda_{\mu_{h-1}}^{1}, \Lambda_{\mu_{h-1}}^{2}, \Lambda_{\mu_{h}-1}^{3}\right), h=1,2,3,4$, satisfy the relations $\left(f_{1}\right)^{2}=-\left(f_{2}\right)^{2}=-\left(f_{3}\right)^{2}=-\left(f_{4}\right)^{2}=1, f_{h} f_{h^{\prime}}=0,1 \leqslant h^{\prime}<h \leqslant 4$, with the permutation $\left(\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}\right)$ of $(0,1,2,3)$ given by Rule 2 with respect to U . Note that the four-vectors f_{1}, f_{2}, f_{3} and f_{4} are linearly independent. Λq is defined by $(\Lambda q)^{\mu}=\sum_{v=0}^{3} \Lambda_{v}^{\mu} q^{v}, 0 \leqslant \mu \leqslant 3$, for any fourmomentum q.

Suppose that the four-momenta q_{1}, \ldots, q_{n} are determined by U as in Rule 2 (in the case $r>0$). Then by (22), we have

$$
\begin{equation*}
q_{i}^{\prime}=\sum_{h=1}^{r} q_{i}^{\mu_{h-1}} f_{h}+\beta_{i}^{\prime} \omega, \quad i=1, \ldots, n \tag{23}
\end{equation*}
$$

where the sum over h is dropped if $r=0$. If $\omega=0$ or $\beta_{i}^{\prime}=0$ for any $i=1, \ldots, n$, we choose $e_{h}=f_{h}, h=1, \ldots, r$, and (20) holds. In the opposite case, we set $e_{1}=\left(\sum_{i=1}^{n} \beta_{i}^{\prime 2}\right)^{1 / 2} \omega$ and $e_{h}=f_{h+1}, h=1, \ldots, r$. According to the proof of Rule 1 a standard basis $\left\{e_{1}, \ldots, e_{d}\right\}$ with $\left(e_{1}\right)^{2}=0$ has $d \leqslant 3$. Then (21) holds and Rule 2^{\prime} is proved.

Rules 2 and 2^{\prime} give an analytical parametrization of any n four-momenta with respect to their scalar products, the parameters of the Lorentz group, and the coordinates of an n-sphere (not all independent).

3. PHYSICAL REGIONS AND PHASE SPACES

Consider a set of n particles c_{1}, \ldots, c_{n}. By the spectral condition, we attach to each particle c_{i} a four-momentum p_{i} such that

$$
\begin{equation*}
\left(p_{i}\right)^{2}=m_{i}^{2}, p_{i}^{0}>0, i=1, \ldots, n \tag{24}
\end{equation*}
$$

where $m_{i}\left(m_{i} \geqslant 0\right)$ is the mass of c_{i}.
In order to give a general treatment for the usual choices of invariant kinematical variables (like the multiperipheral momentum transfers squared and multiparticle invariant masses), we introduce the following fourmomenta:

$$
\begin{equation*}
q_{i}=\sum_{j=1}^{n} t_{i j} p_{j}, \quad i=1, \ldots, n \tag{25}
\end{equation*}
$$

where the coefficients $t_{i j}$ are appropriate real numbers or functions of the scalar products $q_{i} q_{j}, 1 \leqslant i, j \leqslant n$.

By (24), the four-momenta q_{i} satisfy (25) for some $t_{i j}$ only if either all scalar products of q_{i} vanish or the linear space spanned by q_{1}, \ldots, q_{n} has a standard basis $\left\{e_{1}, \ldots, e_{r}\right\}$ with $\left(e_{1}\right)^{2}=1$. Then it follows from (20) that r is the rank of the Gram matrix U of q_{1}, \ldots, q_{n} and

$$
\begin{equation*}
\sigma_{i_{1} \ldots i_{r}}(\mathrm{U})=1 \tag{26}
\end{equation*}
$$

if $\mathrm{G}_{i_{1} \ldots i_{r}}(\mathrm{U}) \neq 0$ and $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}$. Moreover, according to (20) and to the Sylvester law of inertia, (26) holds if and only if U has one positive eigenvalue (more details can be found in [5]). We denote by I_{n+} the space of all Gram matrices $U \in I_{n}$ such that either $U=0$ or U satisfies (26).

Consider now the exclusive reaction

$$
\begin{equation*}
c_{1}+c_{2} \rightarrow c_{3}+\ldots+c_{n} \tag{27}
\end{equation*}
$$

and the inclusive reaction

$$
\begin{equation*}
c_{1}+c_{2} \rightarrow c_{3}+\ldots+c_{n-1}+\text { anything. } \tag{28}
\end{equation*}
$$

We suppose that the above reactions are not forbidden. The condition of energy-momentum conservation gives $p=p_{n}$ for (27) and $p^{0} \geqslant 0, \sqrt{(p)^{2}} \in \mathrm{~S}$ for (28), where $p=p_{1}+p_{2}-p_{3}-\ldots-p_{n-1}$ and S is the spectrum of the invariant mass of the unobserved system from (28).

Suppose next that the $(n-1) \times(n-1)$ matrix $T=\left(t_{i j}\right), 1 \leqslant i, j \leqslant n-1$, given by (25), is invertible. According to (24) and (25) and using the Gram
matrix U of the four-momenta q_{1}, \ldots, q_{n-1}, we obtain the following image of the physical region for reaction (27) (resp. (28)) in the space I_{n-1+} :

$$
\begin{gather*}
\mathrm{D}_{n}=\left\{\mathrm{U} \mid \mathrm{U}=\mathrm{TU}^{\prime} \mathrm{T}^{t} \in \mathrm{I}_{n-1+}, \quad \mathrm{U}_{i i}^{\prime}=m_{i}^{2}, \quad \sum_{i, j=1}^{n-1} \varepsilon_{i} \varepsilon_{j} \mathrm{U}_{i j}^{\prime}=m_{n}^{2}, \quad \sum_{j=1}^{n-1} \varepsilon_{j} \mathrm{U}_{i j}^{\prime} \leqslant 0,\right. \\
\left.\mathrm{U}_{i j}^{\prime} \geqslant 0, \quad \varepsilon_{1}=\varepsilon_{2}=-1, \varepsilon_{3}=\ldots=\varepsilon_{n-1}=1 ; i, j=1, \ldots, n-1\right\}, \tag{29}
\end{gather*}
$$

respectively

$$
\begin{align*}
& \mathrm{D}_{n}^{\prime}=\left\{\mathrm{U} \mid \mathrm{U}=\mathrm{TU}^{\prime} \mathrm{T}^{t} \in \mathrm{I}_{n-1+}, \quad \mathrm{U}_{i i}^{\prime}=m_{i}^{2}, \quad\left[\sum_{i, j=1}^{n-1} \varepsilon_{i} \varepsilon_{j} \mathrm{U}_{i j}^{\prime}\right]^{1 / 2} \in \mathrm{~S},\right. \\
& \left.\mathrm{U}_{i j}^{\prime} \geqslant 0, \quad \sum_{j=1}^{n-1} \varepsilon_{j} \mathrm{U}_{i j}^{\prime} \leqslant 0, \quad \varepsilon_{1}=\varepsilon_{2}=-1, \varepsilon_{3}=\ldots=\varepsilon_{n-1}=1 ; i, j=1, \ldots, n-1\right\} . \tag{30}
\end{align*}
$$

The region D_{n} can be decomposed into the subregions $\mathrm{D}_{n r}=\mathrm{D}_{n} \cap \mathrm{I}_{n-1 r}$ (each $\mathrm{D}_{n r}$ consists of all matrices $\mathrm{U} \in \mathrm{D}_{n}$ with rank $\mathrm{U}=r$). By Rule 1, we have $r \leqslant r_{0}=\min (4, n-1)$. The case $r=0$ holds only when all masses vanish and all four-momenta are parallel. In the case $T=1$, the results of Jacobson [6] show that each nonvoid subregion $\mathrm{D}_{n r}$ is a connected real analytic manifold of dimension $n(r-1)-r(r+1) / 2,1<r \leqslant r_{0}$. $\mathrm{D}_{n 1}$ is not empty if and only if $\mathrm{U}_{i j}=m_{i} m_{j}, 1 \leqslant i, j \leqslant n$, and $m_{1}+m_{2}=m_{3}$ $+\ldots+m_{n} \neq 0$. Moreover, the inverse image of D_{n} in the space of all n-tuples of four-momenta is an analytic manifold if and only if $\mathrm{D}_{n r}$ is empty for $r \leqslant 1$. These results persist if the coefficients of T are analytic functions of the coefficients of U . Note that the closure $\overline{\mathrm{D}}_{n r}$ of $\mathrm{D}_{n r}, 1<r \leqslant r_{0}$, is not an analytic manifold, but it is a semialgebraic variety if the coefficients of T are polynomials of the coefficients of U (i.e. the set $\bar{D}_{n r}$ consisting of all matrices $\mathrm{U} \in \mathrm{D}_{n}$ with rank $\mathrm{U} \leqslant r$ is completely defined by the polynomial inequalities and equalities given by Rule $1 c$) and (26)). Notice also that the boundary of the physical region $\mathrm{D}_{n}(n \geqslant 4)$ is $\overline{\mathrm{D}}_{n r_{0}-1}$ and the boundary of $\mathrm{D}_{n r}$ is $\overline{\mathrm{D}}_{n r-1}(r>2)$. Finally, we remark that the physical regions of all channels crossed to (27) can be obtained by replacing $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ in (29) by $\pm \varepsilon_{1}, \ldots, \pm \varepsilon_{n-1}$ except for the cases $\varepsilon_{1}=\ldots$ $=\varepsilon_{n-1}$ and $\varepsilon_{i}=-\varepsilon_{j}, j \in\{1, \ldots, n-1\}, j \neq i$, for $i \in\{1, \ldots, n-1\}$ fixed with the mass m_{i} smaller than the sum of the masses $m_{j}, j \neq i$ (i.e. the decay channel of particle c_{i}).

The region D_{n-1}^{\prime} can be decomposed into the regions $D_{n-1}^{\prime}(M), M \in S$, where each $D_{n-1}^{\prime}(M)$ is defined by the r. h. s. of (29) with m_{n} replaced by M. Hence any region $D_{n-1}^{\prime}(M)$ has the same algebraic and geometric properties as D_{n}. Moreover, a similar behaviour persists for the union $\mathrm{D}_{n-1}^{\prime \prime}$ of the regions $D_{n-1}^{\prime}(M)$ with $M>M_{c}$, where M_{c} is the threshold mass of the continuum.

Thus if $r>1$, the region $\mathrm{D}_{n-1 r}^{\prime \prime}=\mathrm{D}_{n-1}^{\prime \prime} \cap \mathrm{I}_{n-1 r}$ (resp. its closure $\overline{\mathrm{D}}_{n-1 r}$) is a connected real analytic manifold of dimension $n(r-1)-r(r+1) / 2+1$ (resp. a semialgebraic variety) provided the coefficients of T are analytic functions (resp. polynomials) of the coefficients of U. The closure $\overline{\mathrm{D}}_{n-1}^{\prime \prime}$ of $\mathrm{D}_{n-1}^{\prime \prime}$ is the union of $\mathrm{D}_{n-1}\left(\mathrm{M}_{c}\right)$ and $\mathrm{D}_{n-1}^{\prime \prime} . \overline{\mathrm{D}}_{n-1 r}^{\prime \prime}$ consists of all matrices $\mathrm{U} \in \overline{\mathrm{D}}_{n-1}^{\prime \prime}$ with rank $\mathrm{U} \leqslant r$. Notice that the boundaries of $\mathrm{D}_{n-1}^{\prime \prime}$ and $\overline{\mathrm{D}}_{n-1}^{\prime \prime}$ ($n \geqslant 4$) consist of all matrices $\mathrm{U} \in \overline{\mathrm{D}}_{n-1}^{\prime \prime}$ such that either $\mathrm{U} \in \mathrm{D}_{n-1}^{\prime}\left(\mathrm{M}_{c}\right)$ or $\operatorname{rank} \mathrm{U}<\min (4, n-1)$.

We now digress a little on phase-space analysis. The phase-space volume element of reaction (27) is defined by

$$
\begin{equation*}
d \mathrm{~W}\left(\mathrm{P}, m_{3}, \ldots, m_{n}\right)=\delta^{4}\left(\mathrm{P}-\sum_{i=3}^{n} p_{i}\right) \prod_{j=3}^{n} \theta\left(p_{j}^{0}\right) \delta\left(\left(p_{j}\right)^{2}-m_{j}^{2}\right) d^{4} p_{j} \tag{31}
\end{equation*}
$$

where $\mathrm{P}=p_{1}+p_{2}$ and the symbols δ and θ denote the usual Dirac and Heaviside distributions.

Let us consider the following transformation of variables:

$$
\begin{equation*}
p_{i} \rightarrow\left\{p_{i} q_{i}, p_{i} q_{i}^{\prime}, p_{i} q_{i}^{\prime \prime},\left(p_{i}\right)^{2}\right\}, i=3, \ldots, n-1 \tag{32}
\end{equation*}
$$

where the four-momenta $p_{i}, q_{i}, q_{i}^{\prime}$ and $q_{i}^{\prime \prime}$ are linearly independent and the four-momenta q_{i}, q_{i}^{\prime} and $q_{i}^{\prime \prime}$ are differentiable functions of $p_{j}, 1 \leqslant j \leqslant i$. Then the Jacobian of (32) is

$$
\begin{equation*}
\mathrm{J}=2^{3-n} \prod_{i=3}^{n-1}\left[-\mathrm{D}\left(p_{i}, q_{i}, q_{i}^{\prime}, q_{i}^{\prime \prime}\right)\right]^{-1 / 2} \tag{33}
\end{equation*}
$$

Here and in the remainder of this paper we shall use the notation $\mathrm{D}\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{h}\right)$ for the determinant of the Gram matrix of $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{h}$.

Notice that if

$$
\gamma_{i}=\operatorname{sgn} \operatorname{det}\left|\begin{array}{cccc}
p_{i}^{0} & p_{i}^{1} & p_{i}^{2} & p_{i}^{3} \tag{34}\\
q_{i}^{0} & q_{i}^{1} & q_{i}^{2} & q_{i}^{3} \\
q_{i}^{\prime 0} & q_{i}^{\prime 1} & q_{i}^{\prime 2} & q_{i}^{\prime 3} \\
q_{i}^{\prime \prime} & q_{i}^{\prime \prime 1} & q_{i}^{\prime \prime 2} & q_{i}^{\prime \prime 3}
\end{array}\right|
$$

is fixed at a nonzero value ($\gamma_{i}= \pm 1$), then (32) is an one-to-one transformation.

Suppose that

$$
\begin{equation*}
\mathrm{D}\left(-q_{3}, q_{3}^{\prime}\right)<0, q_{n-1}=\mathrm{P}-\sum_{i=3}^{n-2} p_{i}, n>4 \tag{35}
\end{equation*}
$$

Using (32)-(35), the relation

$$
\begin{equation*}
\int d\left(p_{3} q_{3}\right)\left[-\mathrm{D}\left(p_{3}, q_{3}, q_{3}^{\prime}, q_{3}^{\prime \prime}\right)\right]^{-1 / 2}=\pi\left[-\mathrm{D}\left(q_{3}, q_{3}^{\prime}\right)\right]^{-1 / 2} \tag{36}
\end{equation*}
$$

and integrating (31) over $p_{n},\left(p_{i}\right)^{2}, p_{3} q_{3}$, and $p_{n-1} q_{n-1}(i=3, \ldots, n)$, the phase-space volume element can be written as

$$
\begin{align*}
& d \tilde{\mathrm{~W}}\left(\mathbf{P}, m_{3}, \ldots, m_{n}\right)=\chi \pi\left[-\mathrm{D}\left(q_{3}, q_{3}^{\prime}\right)\right]^{-1 / 2} \prod_{i=4}^{n-1}\left[-\mathrm{D}\left(p_{i}, q_{i}, q_{i}^{\prime}, q_{i}^{\prime \prime}\right)\right]^{-1 / 2} \\
& \cdot \prod_{j=3}^{n-2} d\left(p_{j} q_{j}\right) \prod_{j^{\prime}=3}^{n-1} d\left(p_{j}, q_{j}\right) \prod_{j^{\prime \prime}=4}^{n-1} d\left(p_{j^{\prime \prime}} q_{j^{\prime}}\right) \tag{37}
\end{align*}
$$

where
$\left(p_{i}\right)^{2}=m_{i}^{2}, 3 \leqslant i \leqslant n-1, \quad$ and $\quad p_{n-1} q_{n-1}=\frac{1}{2}\left[\left(q_{n-1}\right)^{2}+m_{n-1}^{2}-m_{n}^{2}\right]$.
The function χ gives the ranges of the invariant variables. Thus, if $q_{i}^{0}>0$, $\left(q_{i}\right)^{2} \geqslant 0$, Rule $1 c$) implies

$$
\begin{align*}
& \chi=\theta\left(\left(q_{n-1}\right)^{2}-\left(m_{n-1}+m_{n}\right)^{2}\right) \prod_{i=3}^{n-2} \theta\left(p_{i} q_{i}-m_{i}^{2} \sqrt{\left(q_{i}\right)^{2}}\right) \\
& \cdot \prod_{j=3}^{n-1} \theta\left(\mathrm{D}\left(p_{j}, q_{j}, q_{j}^{\prime}\right)\right) \prod_{k=4}^{n-1} \theta\left(-\mathrm{D}\left(p_{k}, q_{k}, q_{k}^{\prime}, q_{k}^{\prime \prime}\right)\right) \tag{39}
\end{align*}
$$

Note that if a function invariant to the connected Lorentz group is integrated with respect to the phase-space volume element (31), then the factor $2^{3-n}\left[\theta\left(\gamma_{3}\right)+\theta\left(-\gamma_{3}\right)\right] \ldots\left[\theta\left(\gamma_{n-1}\right)+\theta\left(-\gamma_{n-1}\right)\right]$ must be included in χ. However, this factor is not necessary for the estimation of cross-sections with parity conservation.

If (P$)^{2}$ is fixed, we have $3 n-11$ essential invariant variables $p_{j} q_{j}, p_{j} \cdot q_{j}$, $p_{j^{\prime \prime}} q_{j^{\prime \prime}}, 3 \leqslant j \leqslant n-2,3 \leqslant j^{\prime} \leqslant n-1,4 \leqslant j^{\prime \prime} \leqslant n-1$. By Rule 2, the scalar products of $q_{3}, q_{3}^{\prime}, q_{i}, q_{i}^{\prime}, q_{i}^{\prime \prime}(4 \leqslant i \leqslant n-1)$ are functions of the above variables. It is easy to estimate these functions in the scheme of Byers and Yang [3] $\left(q_{3}=q_{i}^{\prime}=\mathrm{P} ; q_{j}=p_{3}+\ldots+p_{j-1} ; q_{3}^{\prime}=p_{1} ; q_{k}^{\prime \prime}=p_{k-1}\right.$; $4 \leqslant i, k \leqslant n-1 ; 4 \leqslant j \leqslant n-2$) or in the scheme of Poon [5] (i.e. the following multiperipheral scheme: $q_{j}^{\prime}=p_{j-1} ; \quad q_{3}=\mathrm{P} ; q_{i}=\mathrm{P}-p_{3}$ $-\ldots-p_{i-1} ; q_{k}^{\prime \prime}=p_{2}-p_{3}-\ldots-p_{k-1} ; 4 \leqslant i \leqslant n-2 ; 3 \leqslant j \leqslant n-1$; $4 \leqslant k \leqslant n-1$). Notice that (37) is a simple generalization of the phasespace volume element of Byers and Yang [3] (see [11]-[13] for some applications to the results of Byers and Yang). Note also that (37) unifies many usual schemes [14].

Finally, we remark that the phase-space volume element of reaction (28) excepting the discrete part of the spectrum is given by $d \tilde{W}$ $\left(\mathrm{P}, m_{3}, \ldots, m_{n-1}, \mathrm{M}\right) d \mathrm{M}^{2}, \mathrm{M} \geqslant \mathrm{M}_{c}$.

Vol. XXII, no 2-1975.

ACKNOWLEDGMENTS

The authors are pleased to thank Prof. A. L. M. Mihul for many useful discussions and Mr. S. Berceanu for information on several aspects of inclusive kinematics.

REFERENCES

[1] R. Omnes, Dispersion Relations and Elementary Particles, Les Houches, 1960, New York, Wiley, 1960, p. 341.
[2] V. E. Asribekov, Phys. Lett., vol. 2, 1962, p. 284.
[3] N. Byers and C. N. Yang, Rev. Mod. Phys., vol. 36, 1964, p. 595.
[4] F. Röhrlich, Nuovo Cimento, vol. 38, 1965, p. 673.
[5] G. H. Poon, Nucl. Phys., vol. B20, 1970, p. 509.
[6] D. A. Jacobson, Nuovo Cimento, vol. A45, 1966, p. 905.
[7] F. R. Gantmacher, The Theory of Matrices, Nauka, Moscow, 1966.
[8] S. Lang, Algebra, Reading, Mass., Addison-Wesley Publ. Co., 1965, p. 365.
[9] H. Weyl, The classical groups, their invariants and representations, Princeton N. J., Princeton University Press, 1939.
[10] D. Hall and A. S. Wightman, Dan. Vid. Selsk. Mat. Fys. Medd., vol. 31, n ${ }^{0}$ 5, 1959.
[11] A. R. Morrow, Ann. Phys., vol. 57, 1970, p. 115.
[12] P. Nyborg and O. Skeggestad, Notes on Phase Space in Kinematics and Multiparticle Systems, London, Gordon and Breach, 1968.
[13] E. Byckling and K. Kajantie, Particle Kinematics, New York, Wiley, 1973.
[14] El. Mihul, Multiparticle Reactions and Lorentz Invariants (to be published); presented at the CERN/JINR School of Physics, Loma-Koli, 1970.
(Manuscrit reçu le 25 février 1974)

[^0]: (*) On leave of absence from the Institute of Atomic Physics, Bucharest, Romania.

