JAMES GLIMM ARTHUR JAFFE Absolute bounds on vertices and couplings

Annales de l'I. H. P., section A, tome 22, nº 2 (1975), p. 97-107 http://www.numdam.org/item?id=AIHPA 1975 22 2 97 0>

© Gauthier-Villars, 1975, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Absolute bounds on vertices and couplings

by

James GLIMM (1) Rockefeller University, New York, New York 10021

and

Arthur JAFFE (2)

Harvard University Cambridge, Mass. 02138

ABSTRACT. — We prove absolute upper and/or lower bounds on φ^4 and φ^6 dimensionless vertices and physical coupling constants.

1. DEFINITIONS AND ASSUMPTIONS

We derive absolute bounds on φ^4 and φ^6 dimensionless coupling constants g. For instance, in a pure φ^4 model we prove

 $(1.1) 0 \le g \le \text{const.},$

in the single phase region (no symmetry breaking). We also obtain bounds on associated vertex functions and on connected parts. Our general methods presumably have other consequences for *n*-particle amplitudes, $n \ge 8$, which we do not pursue here.

DEFINITIONS. — Let

(1.2) $\langle 1 \dots n \rangle \equiv \langle \Phi(x_1) \dots \Phi(x_n) \rangle$

Annales de l'Institut Henri Poincaré - Section A - Vol. XXII, nº 2 - 1975.

^{(&}lt;sup>1</sup>) Supported in part by the National Science Foundation under Grant MPS 74-13252.

⁽²⁾ Supported in part by the National Science Foundation under Grant MPS 73-05037.

denote the *n*-point (Euclidean) Schwinger function, and let $\langle 1 \dots n \rangle_T$ denote its connected part. We let

(1.3)
$$S_{T}^{(n)}(p) = S_{T}^{(n)}(p_{1}, \dots, p_{n-1})$$

= $\int \langle 1 \dots n \rangle_{T} \exp \left[i \sum_{j=1}^{n=1} p_{j} x_{j} \right] dx_{1} \dots dx_{n-1} \Big|_{x_{n}=0}$

denote the Fourier transform of $\langle 1 \dots n \rangle_T$. We encounter $S_T^{(2)}(p)$ often, and denote it $\chi(p)$. We use the standard spectral representation

(1.4)
$$\chi(p) = S_{T}^{(2)}(p) = \int \frac{d\rho(a)}{p^{2} + a},$$

where $d\rho(a)$ is the spectral measure. Furthermore, we let

(1.5)
$$\Gamma^{(n)}(p) = \Gamma^{(n)}(p_1, \ldots, p_{n-1})$$

denote the *n*-point Euclidean vertex function (thus $\Gamma^{(n)}$ is the amputated, one particle irreducible part of $S_T^{(n)}(p)$). In an even theory, we have for example,

(1.6)
$$\Gamma^{(4)}(p) = S_{T}^{(4)}(p) \prod_{i=1}^{4} \chi(p_{i})^{-1},$$

where $p_4 = -(p_1 + p_2 + p_3)$. Also

(1.7)
$$\Gamma^{(6)}(p) = \left[S_{T}^{(6)}(p) - \sum_{X} S_{T}^{(4)}(X) \chi(P_{X})^{-1} S_{T}^{(4)}(\sim X) \right] \prod_{i=1}^{6} \chi(p_{i})^{-1},$$

where $p_1 + \ldots + p_6 = 0$, where $(X, \sim X)$ is a partition of (p_1, \ldots, p_6) into two subsets of three elements, and where P_X is the sum of the momenta in X.

We let $d \le 4$ denote the space-time dimension and let *m* denote the mass gap. Note that $\Gamma^{(n)}$ has the dimension of mass to the power $d - \frac{1}{2}n(d-2)$. We define the dimensionless amplitude $g^{(n)}(p)$ by

(1.8)
$$g^{(n)}(p) = -m^{-d-n+\frac{1}{2}nd}\Gamma^{(n)}(p),$$

and the associated coupling constant $g^{(n)}$ by

(1.9)
$$g^{(n)} = g^{(n)}(0).$$

For example,

where $\chi \equiv \chi(0)$.

Annales de l'Institut Henri Poincaré - Section A

ASSUMPTIONS. — We make some or all of the following assumptions. In the case of weakly coupled $\mathscr{P}(\varphi)_2$, assumptions (a)-(f) have been proved, while for single phase, even φ_2^4 models (h)-(i) have been proved. We expect (a)-(f) to hold for single phase φ_3^4 , φ_3^6 , and φ_4^4 models, while (h)-(i) are expected for all single phase even φ_d^4 models, $d \leq 4$. The evidence for the validity of (1.4) in φ_4^4 comes from perturbation theory. The proof of (i) in even, single phase φ_2^4 has been established by Cartier (private communication).

(a) The Wightman axioms for a scalar boson field, or the Osterwalder-Schrader axioms for the corresponding Euclidean theory. The two point function $\chi(p)$ satisfies (1.4). In particular we are assuming that $\int \frac{d\rho(a)}{a}$ is finite.

(b) A positive mass gap, m > 0.

$$(c)\langle \varphi \rangle = 0.$$

(d) The second Griffiths inequality,

$$\langle A_1 A_2 \rangle \geq \langle A_1 \rangle \langle A_2 \rangle,$$

where (A_1, A_2) is a partition of $(1, \ldots, n)$. For instance,

(f) The measure $d\rho(a)$ contains a delta function at $a = m^2$, of unit strength (This is a renormalization hypothesis).

(h) In the case of a φ^4 interaction, it is appropriate to assume the Lebowitz inequality $\langle 1234 \rangle_T \leq 0$, or the set of Lebowitz inequalities,

(1.12)
$$\langle 12U \rangle \leq \langle 12 \rangle \langle U \rangle + \sum_{W} \langle W, 1 \rangle \langle W, 2 \rangle$$

where W is an (odd) subset of U.

(i) In the case of a pure φ^4 model, we assume (1.13) $\langle 123456 \rangle_T \ge 0.$

2. BOUNDS ON QUARTIC COUPLINGS

THEOREM 2.1.

(i) Assume
$$(a)$$
- (d) above. Then

(2.1) $g^{(4)} \leq \text{const. } \chi^{-2} m^{-4}.$

J. GLIMM AND A. JAFFE

(*ii*) Assume (f) also, then $\chi \ge m^{-2}$, so

$$(2.2) g^{(4)} \le \text{const}$$

(iii) Assume (h) also, then

(2.3)
$$0 \le g^{(4)} \le \text{const. } \chi^{-2} m^{-4} \le \text{const.}$$

Remark 1. — The constants are pure numbers, independent of all parameters. They can be determined explicitly by the proof.

Remark 2. — The upper bound on $g^{(4)}$ is related to the picture of « critical point dominance » discussed in [1]. According to this picture, for d < 4, $g^{(4)}$ assumes its maximum value at the critical point, *i. e.* at the onset of phase transitions. According to standard ideas, m = 0 at the critical point.

Remark 3. — For d < 4, the limit λ_0 (= bare φ^4 coupling constant) $\rightarrow \infty$ with *m* fixed plays a role in the application of the Callan-Symanzik equations to the study of critical phenomena [2]. We use Theorem 2.1 below, combined with bounds from [3], to show that either this limit exists, or that in this limit $g^{(4)} \rightarrow 0$ (see Corollary 2.4). If $g^{(4)}$ is monotone in the dimensionless charge $\lambda_0 m_0^{d-4}$, then the alternative $g^{(4)} \rightarrow 0$ is excluded. The possibility that $g^{(4)}$ is monotone is discussed in [1], and is a consequence of conventional assumptions made in the study of the Callan-Symanzik equations.

Remark 4. — Other bounds on quartic couplings have been established by Lukaszuk and Martin [4], see also Healy [5]. Their bounds require different assumptions and methods, and yield different conclusions.

In the case of a pure φ^4 model we also obtain bounds on $g^{(4)}(p)$ for $p \neq 0$.

THEOREM 2.2. — Assume (a)-(h) above. There exists $\delta > 0$, such that if $|p_i| < \delta m$, then $g^{(4)}(p)$ is analytic in p and bounded uniformly by

(2.4)
$$|g^{(4)}(p)| \leq \operatorname{const.} \chi^{-2} m^{-4} \leq \operatorname{const.}$$

Proof of Theorem 2.1. — By the positivity of $d\rho$ (Wightman positivity condition)

$$(2.5) \qquad \langle 12 \rangle \ge 0,$$

so the right side of (1.11) is positive. By symmetry we then have

$$(2.6) \quad -\langle 1234 \rangle_{\mathrm{T}} \leq (\langle 12 \rangle \langle 34 \rangle + \langle 13 \rangle \langle 24 \rangle)^{\frac{1}{2}} (\langle 14 \rangle \langle 23 \rangle + \langle 12 \rangle \langle 34 \rangle)^{\frac{1}{2}} (\langle 13 \rangle \langle 24 \rangle + \langle 14 \rangle \langle 23 \rangle)^{\frac{1}{2}} = \left(\sum_{i=1}^{8} A_i\right)^{\frac{1}{2}} \leq 2 \sup A_i^{\frac{1}{2}}.$$

Annales de l'Institut Henri Poincaré - Section A

100

Here each A_i is either

$$\langle 12 \rangle \langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle \langle 34 \rangle = \prod_{1 \le i < j \le 4} (ij)$$

or else a permutation of

$$\langle 12 \rangle^2 \langle 34 \rangle^2 \langle 13 \rangle \langle 24 \rangle.$$

We bound each A_i using Proposition A2.1, of Appendix 2,

$$\langle x0 \rangle \leq O(1) |x|^{-d_{\varepsilon}-m(1-\varepsilon)|x|} \chi.$$

An elementary estimate shows that each $A_i^{\frac{1}{3}}$ is integrable over $dx_1 dx_2 dx_3$. By homogeneity, and (A2.1),

$$\int \mathbf{A}_i^{\frac{1}{2}} dx_1 dx_2 dx_3 \le \mathbf{O}(1) m^{-d} \chi^2,$$

from which we conclude

(2.7)
$$-S_{\rm T}^{(4)}(0) \le {\rm O}(1)m^{-d}\chi^2.$$

By (1.8), with n = 4, and (1.6) we have (2.1). The theorem then follows.

Proof of Theorem 2.2. — Assuming (h) and (2.6),

$$(2.8) \qquad |\langle 1234 \rangle_{\mathsf{T}}| \leq 2 \sup_{i} A_{i}^{\frac{1}{2}}.$$

We bound the power series coefficients of $S_T^{(4)}(p)$, expanding about p = 0. The derivatives $\partial/\partial p_j$ become multiplication by ix_j in the Fourier transform, and are dominated by the exponential decrease of (2.8), estimated by (A2.1). Thus the power series in momenta converges for $|p_i| < m/3$, and establishes the analyticity and boundedness of $S_T^{(4)}(p)$,

(2.9)
$$\left| S_{\rm T}^{(4)}(p) \right| \leq {\rm O}(1)m^{-d}\chi^2.$$

Finally, the analyticity and boundedness of $\chi(p)^{-1}$ follows from (1.4), for |p| < m, yielding

$$|\chi(p)|^{-1} \leq 2\chi(0)^{-1}.$$

Thus $g^{(4)}(p)$ is analytic in p and

$$|g^{(4)}(p)| \le O(1)m^{-d}\chi^{-2} \le O(1)m^{-d+4}$$

with the constant independent of p, m, λ for $|p_i| \leq \delta m$. This completes the proof. We have also proved.

COROLLARY 2.3. — Assuming (a)-(h), $S_T^{(4)}(p)$ is analytic for $|p_i| \leq \delta m$ and bounded uniformly by (2.9).

We now let $S_j^{(n)}$ be the *n*-point Schwinger function for a model satis-Vol. XXII, nº 2 - 1975. fying (a)-(h) and labelled by the index j (for instance, $S_{\lambda_0,m}^{(n)}$ may be the φ_2^4 model, labelled by the bare coupling λ_0 and mass m).

COROLLARY 2.4. — Assume m_j is bounded away from zero. Then either there exists a convergent subsequence of Schwinger functions

(2.10)
$$S^{(n)} = \lim_{i} S^{(n)}_{j},$$

with $S^{(n)}$ satisfying (a)-(h), or else $g_T^{(4)}(p) \rightarrow 0$.

Proof. — Assume for some p, with $|p_i| \le \delta m$, there is a subsequence of $g_r(p)$ bounded away from zero. Then by (2.4)

$$\chi_r^2 \leq \text{const.} \ m_r^{-4} (g_r^{(4)}(p))^{-1} \leq \text{const.}$$

This bound (uniform in r) on

$$\int \langle 12 \rangle_{\mathrm{T},r} dx_1 = \int \langle 12 \rangle_r dx_1 \leq \text{const.}$$

proves a uniform bound

$$(2.11) \qquad |\langle fg \rangle| \le |f|_{\mathscr{G}} |g|_{\mathscr{G}}$$

for a suitable Schwartz space norm $| . |_{\mathscr{S}}$. Thus by Theorem 1 of [3], a convergent subsequence of Schwinger functions $S_{j_i}^{(n)}$ exists, and $S^{(n)}$ is a tempered distribution. The properties (a)-(h) follow from the corresponding properties in the approximate theories.

Conversely, if $g_j(p) \to 0$ for each p with $|p_i| < \delta m$, the uniform bound (2.4) ensures that the family of analytic functions $g_j(p)$ converges to the analytic function zero.

3. BOUNDS ON $S_T^{(6)}(p)$

In this section we prove preliminary bounds on S_T^6 .

THEOREM 3.1.

(i) Assume (a)-(h). Then there exists $\delta > 0$ such that if $|p_i| \leq m\delta$, then $S_T^{(6)}(p)$ is analytic and bounded by

(3.1)
$$m^{2d}\chi^{-3} |S_{T}^{(6)}(p)| \leq \text{const.}$$

(*ii*) Assume (a)-(i). Then

(3.2)
$$0 \le m^{2d} \chi^{-3} S_{T}^{(6)}(0) \le \text{const.}$$

The constants are pure numbers, independent of the parameters.

Annales de l'Institut Henri Poincaré - Section A

Proof. — We consider p = 0. The extension to $p \neq 0$ follows the proof of Theorem 2.2. Using (f), we have

$$(3.3) \qquad \langle 123456 \rangle - \langle 12 \rangle \langle 3456 \rangle \ge 0.$$

The definition of the six point connected part is

(3.4)
$$\langle 123456 \rangle_{\mathrm{T}} = \langle 123456 \rangle - \sum_{\mathrm{Y}} \langle \mathrm{Y}_1 \rangle \langle \mathrm{Y}_2 \rangle + 2 \sum_{\mathrm{Z}} \langle \mathrm{Z}_1 \rangle \langle \mathrm{Z}_2 \rangle \langle \mathrm{Z}_3 \rangle.$$

Here $Y = (Y_1, Y_2)$ ranges over the fifteen partitions of (1, 2, ..., 6) into two and four element subsets, while $Z = (Z_1, Z_2, Z_3)$ ranges over the fifteen partitions of (1, ..., 6) into three pairs. Thus

$$(3.5) \quad -\langle 123456 \rangle_{\mathrm{T}} \leq \sum_{\mathrm{Y}}' \langle \mathrm{Y}_{1} \rangle \langle \mathrm{Y}_{2} \rangle - 2 \sum_{\mathrm{Z}} \langle \mathrm{Z}_{1} \rangle \langle \mathrm{Z}_{2} \rangle \langle \mathrm{Z}_{3} \rangle.$$

where Σ' omits the partition $\langle 12 \rangle \langle 3456 \rangle$. We use (h) and the definition of $\langle 1234 \rangle_T$ to obtain

$$(3.6) \qquad -\langle 123456 \rangle_{\mathrm{T}} \leq \sum_{\mathbf{Z}}' \langle \mathbf{Z}_1 \rangle \langle \mathbf{Z}_2 \rangle \langle \mathbf{Z}_3 \rangle,$$

where Σ' omits the three partitions which contain the factor $\langle Z_1 \rangle = \langle 12 \rangle$. By symmetry,

(3.7)
$$-\langle 123456 \rangle_{\mathrm{T}} \leq 12 \sup \prod_{j=1}^{15} \prod_{i=1}^{3} \langle \mathbf{Z}_{i}^{(j)} \rangle^{1/15},$$

where j = 1, 2, ..., 15 labels the two element subsets of (1, ..., 6), and $(Z_1^{(j)}, Z_2^{(j)}, Z_3^{(j)})$ one of the twelve partitions of (1, ..., 6) into three pairs, no one of which is j.

We now follow the proof of Theorem 2.1 to obtain

$$- S_{\mathrm{T}}^{(6)}(0) \leq \mathrm{const.} \ m^{-2d} \chi^3.$$

proving one side of (3.1).

We next use (1.12) (see [3]) with U = (3456) to obtain

$$\langle 123456 \rangle \leq \langle 12 \rangle \langle 3456 \rangle + \sum_{W} \langle W, 1 \rangle \langle \sim W, 2 \rangle,$$

where W ranges over the eight odd subsets of U. Thus by (3.4),

$$\langle 123456 \rangle_{T} \leq -\sum_{Y}^{''} \langle Y_{1} \rangle \langle Y_{2} \rangle + 2\sum_{Z} \langle Z_{1} \rangle \langle Z_{2} \rangle \langle Z_{3} \rangle$$

where Σ'' ranges over the six partitions containing both 1 and 2 in the four element subset. By the definition of $\langle 1234 \rangle_{T}$,

$$\langle 123456 \rangle_{\mathrm{T}} \leq -\sum_{\mathrm{Y}}^{\prime\prime} \langle \mathrm{Y}_{1} \rangle_{\mathrm{T}} \langle \mathrm{Y}_{2} \rangle_{\mathrm{T}} + \sum_{\mathrm{Z}}^{\prime} \langle \mathrm{Z}_{1} \rangle \langle \mathrm{Z}_{2} \rangle \langle \mathrm{Z}_{3} \rangle.$$

By (1.11) we note that

$$\langle 123456 \rangle_{\mathrm{T}} \leq 2 \sum_{\mathrm{Z}}' \langle \mathrm{Z}_1 \rangle \langle \mathrm{Z}_2 \rangle \langle \mathrm{Z}_3 \rangle,$$

which is just a bound by twice the right hand side of (3.6). We now proceed as above to obtain the bound (3.2) for p = 0.

Finally, we remark that assuming (i) yields $0 \le S_T^{(6)}(0)$, to complete the proof.

4. BOUNDS ON $g^{(6)}$

We use the bounds of Chapter 3 to establish bounds on the six point vertex function in the φ^4 model.

THEOREM 4.1. — Assuming (a)-(h), for $|p_i| \le m\delta$, $g^{(6)}(p)$ is analytic and bounded by

$$\left|g^{(6)}(p)\right| \leq \text{const.}$$

where δ is the smaller of the constants given by Theorems 2.2 and 3.1.

Proof. — By Theorem 3.1, $m^{2d}\chi^{-3}S_T^{(6)}(p)$ is analytic and bounded. By Theorem 2.2 $g^{(4)}(p)$ is analytic and bounded. Note

$$g^{(4)}(p) = m^{d-4} \prod_{i=1}^{4} \chi(p_i)^{-1} \mathbf{S}_{\mathrm{T}}^{(4)}(p).$$

The desired bound follows by

$$g^{(6)}(p) = -m^{2d-6}\Gamma^{(6)}(p)$$

and the representation (1.7).

APPENDIX 1

THE FREE EUCLIDEAN PROPAGATOR

We establish the elementary bounds on

$$c(m^2; x) = \frac{1}{\pi} \int \frac{e^{-ipx}dp}{p^2 + m^2} = m^{d-2}c(1; mx)$$

used below. By Euclidean invariance, we may evaluate c for $x = x_t = (t, \vec{0}), t > 0$, and

$$f(t) = c(1 ; x_t) = \int \frac{e^{-t\mu}}{\mu} d\vec{p}$$
:

where $\mu = \mu(\vec{p}) = (\vec{p^2} + 1)^{\frac{1}{2}}$.

PROPOSITION A1.1. — There is a constant O(1) depending only on d, such that

$$f(t) \leq \begin{cases} O(1)t^{(1-d)/2}e^{-t} & t \geq \frac{1}{2} \\ O(1)t^{-(d-2)} & t \leq \frac{1}{2}, \ d \geq 3 \\ O(1) \mid \ln t \mid & t \leq \frac{1}{2}, \ d = 2 \end{cases}$$

REMARK. — The long and short range exponents of t differ.

REMARK. - *Proof.* - Let $\mu_t(\vec{p}) = (\vec{p^2} + t^2)^{\frac{1}{2}}$, so $f(t) = t^{-(d-2)}e^{-t}I(t)$

$$f(t) = t^{-(u-2)}e$$

where

$$I(t) = \int \mu_1^{-1} \exp \left[-(\mu_t - t) \right] d\vec{p}.$$

For $t \ge \frac{1}{2}$, and $t \ge |\overrightarrow{p}|$, we use

$$\mu_t - t \leq \text{const.} \ \vec{p^2} t^{-1}$$

to establish

$$l(t) \leq \mathcal{O}(t^{(d-3)/2}).$$

Furthermore, for $\frac{1}{2} \le t \le |\vec{p}|$, we use $\mu_t - t \ge \text{const.} |\vec{p}|$ to give $\mathbf{l}(t) \leq \mathbf{O}(t^{-1}).$

Thus for $t \ge \frac{1}{2}$, we have established the proposition. For $t \leq \frac{1}{2}$, and $d \geq 3$, we have

$$I(t) \leq \int |\vec{p}|^{-1} \exp\left[-|\vec{p}| + \frac{1}{2}\right] d\vec{p} \leq O(1).$$

To bound the case d = 2, with $t \le \frac{1}{2}$, we use

$$I(t) \le \text{const.} \int_0^\infty e^{-u} \frac{du}{(t^2 + u^2)^{\frac{1}{2}}} \le O(|\ln t|).$$

APPENDIX 2

THE EUCLIDEAN PROPAGATOR

The Euclidean propagator $\langle xy \rangle$ has the spectral representation given by (1.4),

$$\langle xy \rangle = \langle \Phi(x)\Phi(y) \rangle = \int dp(a)c(a ; x - y).$$

PROPOSITION A2.1. — Assume (a)-(c) above, and let $\varepsilon > 0$. Then

(A2.1)
$$\langle x0 \rangle \leq O(1) |x|^{-d} e^{-m(1-\varepsilon)|x|} \chi,$$

where O(1) depends only on the dimension d and on ε .

PROOF. — We use proposition A1.1. Let $d \ge 3$. Then

$$\langle x0 \rangle = \int d\rho(a) a^{(d-2)/2} c(1; \sqrt{ax}).$$

$$\leq O(1) \int \frac{d\rho(a)}{a} a |x|^{-d+2} e^{-\sqrt{a}|x|(1-\varepsilon/2)}$$

$$\leq O(1) e^{-m(1-\varepsilon)|x|} \left(\int \frac{d\rho(a)}{a} \right) |x|^{-d+2} \left(\sup_{a} a e^{-\sqrt{a}|x|\varepsilon/2} \right).$$

The sup occurs for $a = 4(\varepsilon x)^{-2}$. Thus (A2.1) follows. For d = 2,

$$\langle x0 \rangle = \int d\rho(a)c(1; \sqrt{ax})$$

$$\leq O(1) \int_{I} \frac{d\rho(a)}{a} a | \ln\sqrt{ax} | + O(1) \int_{II} \frac{d\rho(a)}{a} a e^{-\sqrt{a}|x|},$$

where

$$I = \{ a : m \le \sqrt{a} \le |2x|^{-1} \} \text{ and } II = \{ a : \sqrt{a} \ge |2x|^{-1} \}.$$

The integral over II is bounded as above, by (A2.1). The integral over I is bounded using

$$\sup_{a \in I} a | \ln \sqrt{a} | x | \le | x |^{-2} \sup_{0 \le u \le 1} u^{2} | \ln u | \le O(1) | x |^{-2}.$$

This yields the bound O(1) $|x|^{-3}\chi$. Since $|mx| \le \frac{1}{2}$, for $a \in I$, the integral over I is bounded by (A2.1).

REMARK. — The increase in the bound on the short range singularities (from $x^{(2-d)}$ to x^{-d}) is associated with an allowed divergence of the field strength renormalization integral

$$\mathbf{Z}^{-1} = \int d\rho(a)$$

Annales de l'Institut Henri Poincaré - Section A

REFERENCES

- [1] J. GLIMM and A. JAFFE, Critical point dominance in quantum field models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 27-41.
- [2] G. PARISI, Field theory approach to second order phase transitions in two and three dimensional systems, 1973 Cargèse lectures.
- [3] J. GLIMM and A. JAFFE, Remark on the existence of φ^4 . Phys. Rev. Lett., t. 33, 1974, p. 440-442.
- [4] L. LUKASZUK and A. MARTIN, Absolute upper bounds for $\pi\pi$ scattering. Nuovo Cimento, t. 52 A, 1967, p. 122-145.
- [5] J. HEALY, New rigorous bounds on coupling constants in field theory. Phys. Rev., D8, 1973, p. 1904-1914.

(Manuscrit reçu le 9 août 1974)