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Spherically symmetric charged dust distributions
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Section A :

Physique théorique.

ABSTRACT. - The paper presents a discussion of the dynamics of charged
dust distributions with spherical symmetry. The general behaviour is quite
complicated and while for pll (J [ a constant greater than unity there is a
collapse of the spatial volume, the circumferential area may show an oscilla-
tory behaviour (p and 6 indicate the matter and charge densities respecti-
vely). Again, for p/ I (J a constant less than unity, the spatial volume would
not in general collapse but the circumferential area may do so. However
there cannot be any regular oscillation if p/7 be constant. Some static and
nonstatic solutions are displayed but excepting a class of static solutions,
all these have a singularity at the center of symmetry. A static solution,
fitted on one side with a Schwarzschild field and on the other side with the

Reissner-Nordstrom metric, shows that a star may have around it a shell

of charged dust in equilibrium and the charge mass ratio may have arbi-
trarily large values for the shell.

I. - INTRODUCTION

The problem of a charged matter distribution in general relativity is

interesting for more reasons than one. While on one hand there is the clas-
sical problem of the electron, on the other hand one may wonder whether
this case, where there is a « repulsive field of force» as also an anisotropic
stress, may show some interesting aspects in gravitational collapse. The
investigations of Bardeen [1], de la Cruz and Israel [2] as also of Novikov [3]
were apparently aimed principally at a study of the temporal behaviour of
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the Schwarzschild radial coordinate (whose square determines the circum-
ferential area of the spherical shells) and the charge distribution was assumed
to embedded in an outside empty space (i. e., the space of Reissner-Nord-
strom metric). These authors reached the conclusion that under some
circumstances a bounce and re-expansion occurs but into a universe different
from that in which the collapse initiated. There might also be regular oscilla-
tions between two finite extrema of the Schwarzschild radial coordinate.
Again Bekenstein [4] was able to show that a bounce cannot occur in the
region between the two singularities of the Reissner-Nordstrom metric.
However the situation regarding any possible collapse in the radial direction
(as distinct from circumferential collapse) seems not to have been properly
investigated, although it is known that in the case of anisotropic collapse,
even for uncharged dust spheres, the radial and the circumferential dimen-
sions have quite different temporal behaviours and naked singularities of
novel type may appear [5], [6], [7]. Recently Misra and Srivastava [8] and
Vickers [9] have independently shown that one can obtain first integrals of
the Einstein Maxwell equations for a charged dust sphere, the integrals
involving a number of arbitrary functions of the radial coordinate. In the
present paper we present these first integrals and then investigate the condi-
tion of the regularity of the field at the centre. It turns out that this sets some
restrictions on the arbitrary functions and it is found that at the centre one
gets an Oppenheimer-Snyder type of collapse to a state of infinite density if
/~/T~ ~ 1, while if /~/7~  1, the collapse is halted and the system after
contracting to a minimum expands indefinitely.
However this behaviour at the centre is by no means typical of what

happens elsewhere. There the circumferential area may show oscillations
between two finite values or expansion from a minimum to arbitrary large
values (or the time reversed contraction) as noted by previous authors.
However we find that the cases of circumferential oscillation are invariably
associated with a radial collapse if (1/ p be constant and there is a consequent
evolution of singularity with infinite values of charge and matter densities.
Unlike the investigations of previous authors, these conclusions are obtained
independently of any boundary conditions (as, for example, would be impo-
sed by the continuity with an « electrovac » universe outside) and would
thus hold also for charged universes of the type as was at one time conside-
red by Bondi and Lyttleton [10].

II. - FIELD EQUATIONS
AND THEIR FIRST INTEGRALS

With the spherically symmetric line element
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one can assume the coordinate system to be comoving. In the above form /).,
eo and v are functions of r and t. The Einstein-Maxwell equations for a
charged dust are, in this case

where

and dots and primes indicate differentiation with respect to t and r respecti-
vely.
The following first integrals may be obtained fairly easily (cf. references [8]

and [9]).

where f, g, A, B, and C are functions of r alone and while C is arbitrary,
A and B are given by

Equation (11) may be formally integrated to give
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with

and K is an arbitrary function of r alone. The explicit form of the integral
on the right of equation (14) will depend on the values of A, B and C and
will, in different cases, be as follows

There still remain the field equations (3) and (4) and these give

The discussion has brought in six functions of r viz, f, g, A, B, C and K.
Amongst these there exist the relations (13) and (16). Thus there remain
four independent functions of r. These correspond physically to the dis-
tributions of p and y; the initial velocity distribution and the possibility
of a transformation of the radial coordinate r [11].

III. - REGULARITY OF THE FIELD AT THE CENTRE

The regularity of the field at the centre r = 0, requires in particular
i) exp ~,, exp v and their derivatives at least up to second order exist at the

origin and further exp ~,, exp v do not vanish.

Annales de l’Institut Henri Poincaré - Section A



233SPHERICALLY SYMMETRIC CHARGED DUST DISTRIBUTIONS IN GENERAL RELATIVITY

ii) Considering a circle of infinitesimal radius r at the origin, its radius
- eÀ/2r and its circumference tends to 2new/2, so that for the origin to be
a regular point, one must have

iii) For the validity of equation (17) at all times,

This last condition follows from a critical examination of the field equations.
If this were not true cr would be infinite at the origin.
We are thus led to the following forms for exp À exp cv and exp v in the

neighbourhood of the origin

where /1, the a’s, the y’s, the P’s are functions of t alone and we have made
[exp v]r--. 0 = 1 by a suitable transformation of the time scale. Substituting
these expressions in our equations (9), (10) and (11), we get

where

and also

wheie po and ao are the values of p and at the origin. In obtaining the
above equations it is more convenient to use the following equations which
are readily derivable from the field equations and are thus equivalent to
the set (9), (10), ( 11 ) and (16) [12]
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which has the equivalent form

where 0 is the expansion == v/.l; /1 and q2 is the shear term and vanishes at
the origin. Equations (24) and (25) together give

which again can be integrated to give

Thus if 1, a decreasing exp (/~/2) would vanish at a finite time in view
of equation (28), as from equation (24) co is positive. One would thus have
a collapse to a singular state of vanishing spatial volume and infinite density.
Again if at &#x3E; 1, the right hand side of equation (28) is positive and it is
clear that there exists the possibility of a minimum of exp (/~/2) from which
the system may bounce back. However these considerations apply only
at the origin and we shall see that elsewhere the situation is essentially
different and much more complicated. The difference arises due to the fact
that while at the origin the electric intensity and the shear both vanish
leading to a situation similar to that obtaining for pure uncharged dust,
elsewhere both these quantities exist [12] giving rise to an extremely compli-
cated situation. The difference is apparent in the occurrence of the term A

exp ( - 2m) in equation ( 11 ) whereas there is no corresponding term in
equation (29). The reason is that in view of equations (12), (20) and (21)
A exp ( - 2D) vanishes as r2 as r - 0, whereas the other terms are in general
nonvanishing as r - 0. A comparison of equations ( 11 ) and (29) shows
that C behaves as 4co(1 - ao)~3 jao as r -+ 0, and is positive or negative at
the centre according as the central value of is less or greater than

unity.

I V . - THE GENERAL DYNAMICAL BEHAVIOUR

AND NONSTATIC SOLUTIONS WITH SINGULARITY

AT THE ORIGIN

The behaviour of exp w which gives the circumferential area may be
studied from equation (15). From equation ( 11 ), the zeros of w occur at
values of exp co given by 1
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and one has the following situations:

(ai) A, B are of the same sign and C is of opposite sign. In this case both
the roots are positive and real if 4AB. In case A and B be both nega-
tive (which corresponds to p &#x3E; and I  2), exp D will execute
oscillations between the two roots. This may be compared with the results
of de la Cruz and Israel [2] who considered the charge distribution in the
form of a shell and the field to be continuous with an outside Reissner-
Nordstrom metric. The continuity condition requires in our case [8], [9], [13].

where b is the value of r at the boundary and J1 and e are the mass and
charge constants appearing in the Reissner-Nordstrom metric. The de la
Cruz-Israel conditions for oscillation of the shell require that at r = b,
Ie /~u, ~ ( are each less than unity.
However with p &#x3E; , if (J I p be constant, then from equation (27 b)

there will be a collapse of the volume in finite proper time and hence although
exp cv oscillates, there will be a radial collapse with a singularity of infinite

density (exp ~ -~0, exp + ~ -~0, ~ p - oo). This singularity, in view
of equations (9) and (10), would be accompanied by a vanishing of o/ cor-
responding to the appearance of an extremum of the circumferential radius
regarded as a function of the comoving radial coordinate (cf. the shell
crossing in case of dust spheres discussed by Yodzis et al. [7]).

(a2) If however A and B be both positive with C negative (i. e. I (]’ I &#x3E; p,
Ifg I &#x3E; 2), ~ assumes negative values for values of exp (co/2) lying between
the two zeros of ç (i. e. the zeros of ~) and exp co can either run between
a finite positive minimum and infinity (in either direction) or it may run
between zero and a finite maximum (again in either direction).

(a3) If C2 = 4AB, the roots are identical and there is the possibility of a
static solution which will be discussed later.

(b) A and B are of opposite signs. The roots are real and of opposite signs.
In this case there is no oscillation but either a minimum or a maximum as in
(a2) above.

(c) A, B, C are all of the same sign and C2 &#x3E; 4AB. Both the roots are
real and negative. Physically admissible cases occur only if all the three are
positive and then there is a monotone change of exp w from zero to infinity.

(d) C2  4AB. The roots are complex. The case A and B are positive is
similar to that in (c) while if they are negative no real solution exists.
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Looking back over the discussion we may say that in no case can there
be regular oscillations if J/p be constant-a conclusion also reach by Bai-
lyn [14] for the special case of spheres with I e I &#x3E; ,u.
We have not been able to obtain any time dependent singularity free

solution. It may be noted that in view of equations (12), (13) and (21).
A vanishes at least as rapidly as r6 and B as r2 as r goes to zero. We have
noted at the end of the last section that C vanishes at least as rapidly as r 3
as r goes to zero. Thus none of the three functions A, B and C can reduce
to a constant other than zero if the field is to be regular at the origin. Howe-
ver equation (16) is trivially satisfied if any two of the three functions vanish
and the third is a constant not equal to zero. One can in that case integrate
readily the other equations and obtain an explicit solution singular at the
origin.

If A = B = 0, C a constant other than zero, one gets

where f and a are arbitrary functions of r. Again with A = C = 0, B = a
constant ~ 0, one gets the solution given by Hamoui [13]

~

where f again is an arbitrary function of r. In both the above cases = p.
One however gets a case where o- ~/p 5~ 1 by taking A = a constant 5~ 0,
B = C = 0. One then has

All these solutions may be fitted to an outside Reissner-Nordstrom metric
and it turns out that in each of the three cases J1 &#x3E; ~ e ~ where the exterior
metric is 

,

V. - THE STATIC CASE

In view of equation (11) and the conditions for the regularity at the
origin, the static nonsingular solutions are characterised by A = B = C = 0
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p and I =2. The latter conditions are also sufficient for the
solution to be static. For, these conditions give from equations ( 12) and (13)
A = B = 0. Equation (16) would then require, in view of the regularity
at the origin that C also vanishes and the solution becomes static. Hence
nonstatistic regular solutions with p = I (]’ I have 2. In general
for these cases J1 5~ ! ~ I although p = cr ). In the static case we let exp
6t) = ~ by a transformation of the radial coordinate. If now we choose g in
accordance with equation (21) taking care that g . r is everywhere greater
than unity in the domain of r where the solution is to apply, then we get a
regular static solution with exp À and exp v determined by equations (9)
and (10) with f = 2/g. As a very simple example one may take g = 
so that f = c0r3 and

We restrict the solution to the region 0  where Corb  2. The
method of generating regular static solutions thus depends solely on choosing
a suitable form for the function g. In all these solutions it is easy to see that the

parameters J1 and I e in the exterior Reissner-Nordstrom metric must be equal.
One may also have another class of static solutions which however do

not satisfy the conditions of regularity at the origin. These correspond to
cases (a3) mentioned in section IV above. With exp w = r2, one has in this
case

With the relations (30), equation (16), regarded as a quadratic in g, gives
either

or

Equation ( 10) rules out (31 a), while with (31 b), it yields

Using equations (30), (31 b) and (32), we get from equations (9), (12) and (13)

Vol. XXII, n° 3 - 1975. 17



238 A. K. RAYCHAUDHURI

Thus the field is completely determined one the function A is specified. The
solution has a singulaiity at r = 0 ; one may however exclude the region
around the origin from the domain of the solution. Thus if the solution be
valid for r a a, one may make it continuous with a Schwarzschild or
Reissner-Nordstrom field (but not an euclidean field) in the region ,  a.
A simple example where it is continuous with the Schwarzschild field may
be of some astrophysical interest and is presented below. We take

Then one gets, choosing a constant of integration suitably, for r  a &#x3E; 2m

where we have written

The solution presented above may be fitted with the Schwarzschild metric

at r = a. Although 7 2014~ a as r - a, the metric tensor components along
with their first derivatives (excepting as well as the electric field are all
continuous at r = a. The infinity of a arises in the folloving manner. For
the continuity with the Schwarzschild field, the electric intensity must
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vanish at r = a which requires the vanishing of f p/6 but in view of equa-
tion (9), f cannot vanish, hence the vanishing of pia and consequent infinite
value of a. It is thus apparent that one can get rid of this infinity if the inte-
rior field be of the Reissner-Nordstrom type with a nonvanishing electric
field ; however the interesting feature of our static solution that one can have
even for a static distribution p if there be « a hole or pocket of alien
matter inside » [13] ; would not thereby be disturbed.
At any r = b, where b &#x3E; a, one may make the solution continuous with

the Reissner-Nordstrom metric if

and

Thus e is finite for all values of b and tends to zero as b - a, although a is
infinite at r - a.
One may take the mass of the charged dust cloud to be given by

and the charge-mass ratio for b » a becomes I e 11M = and may
have arbitrarily large values for any given m. Thus a star may have around
it a shell of charged dust in equilibrium with arbitrarily large charge-mass
ratio. However there exists upper bounds to the total charge and mass:

The right hand sides of these inequalities tend towards m and 2m respecti-
vely as a tends towards the Schwarzschild radius 2m.
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