@article{AIHPA_1975__22_3_249_0, author = {Velo, G.}, title = {An existence theorem for a massive spin one particle in an external tensor field}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {249--255}, publisher = {Gauthier-Villars}, volume = {22}, number = {3}, year = {1975}, mrnumber = {378627}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1975__22_3_249_0/} }
TY - JOUR AU - Velo, G. TI - An existence theorem for a massive spin one particle in an external tensor field JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1975 SP - 249 EP - 255 VL - 22 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1975__22_3_249_0/ LA - en ID - AIHPA_1975__22_3_249_0 ER -
%0 Journal Article %A Velo, G. %T An existence theorem for a massive spin one particle in an external tensor field %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1975 %P 249-255 %V 22 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1975__22_3_249_0/ %G en %F AIHPA_1975__22_3_249_0
Velo, G. An existence theorem for a massive spin one particle in an external tensor field. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 22 (1975) no. 3, pp. 249-255. http://archive.numdam.org/item/AIHPA_1975__22_3_249_0/
[1] See Vol. 4 of the Proceedings of the Coral Gables Conference on Fundamental Interactions at High Energy, January 1971, Edited by M. Dal Cin, G. J. Iverson and A. Perlmutter, Gordon and Breach Science Publishers, N. Y., London, Paris.
[2] Relativistic wave equations as singular hyperbolic systems. Proc. Symp. in Pure Math., vol. XXIII, Berkeley, 1971, AMS Providence, Rhode Island, 1973. | MR | Zbl
,[3] Phys. Rev., t. 186, 1969, p. 1337.
and ,[4] Phys. Rev., t. 188, 1969, p. 2218.
and ,[5] Phys. Rev., D, t. 4, 1971, p. 359. | MR
and ,[6] Phys. Rev., D, t. 9, 1974, p. 928.
,[7] For the general ideas and concepts involved in the theory of Partial Differential Equations we refer to the book by R. COURANT and D. HILBERT, Methods of Mathematical Physics, Wiley-Interscience Inc., New York, 1962, vol. 2, especially Chapt. 6.
[8] Lett. Nuovo Cimento, t. 5, 1972, p. 221.
and ,[9] Systèmes linéaires hyperboliques non stricts. Colloque C. B. M. (Louvain 1964); reprint in Battelle Rencontres on Hyperbolic Equations and Waves, Seattle, Wis., 1968. | MR | Zbl
and ,[10] Lectures on Hyperbolic Partial Differential Equations, Mimeographed Notes, Stanford University, Spring-Summer, 1963.
,