@article{AIHPA_1975__23_1_1_0, author = {Speer, Eugene R.}, title = {Ultraviolet and infrared singularity structure of generic {Feynman} amplitudes}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {1--21}, publisher = {Gauthier-Villars}, volume = {23}, number = {1}, year = {1975}, mrnumber = {386502}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1975__23_1_1_0/} }
TY - JOUR AU - Speer, Eugene R. TI - Ultraviolet and infrared singularity structure of generic Feynman amplitudes JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1975 SP - 1 EP - 21 VL - 23 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1975__23_1_1_0/ LA - en ID - AIHPA_1975__23_1_1_0 ER -
%0 Journal Article %A Speer, Eugene R. %T Ultraviolet and infrared singularity structure of generic Feynman amplitudes %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1975 %P 1-21 %V 23 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1975__23_1_1_0/ %G en %F AIHPA_1975__23_1_1_0
Speer, Eugene R. Ultraviolet and infrared singularity structure of generic Feynman amplitudes. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 23 (1975) no. 1, pp. 1-21. http://archive.numdam.org/item/AIHPA_1975__23_1_1_0/
[1] Ann. Inst. Henri Poincaré, t. 14, 1971, p. 1-55. | Numdam | MR | Zbl
and ,[2] Generalized Feynman Amplitudes, Princeton University Press, Princeton, 1969. | MR | Zbl
,[3] Connectivity in Graphs, University of Toronto Press, Toronto, 1966. | MR | Zbl
,[4] Algebraic Topology Methods in the Theory of Feynman Relativistic Amplitudes, Battelle Rencontres 1967 Lectures in Mathematics and Physics, ed. C. M. DeWitt, J. A. Wheeler, New York, W. A. Benjamin, 1968. | Zbl
,[5] Lectures on Analytic Renormalization, University of Maryland Technical Report 73-067.
,[6] Generalized Functions, Vol. I, New York, Academic Press, 1964. | Zbl
and ,[7] J. Math. Phys., t. 9, 1968, p. 1404-1410.
,[8] « On a class of Compact Manifolds », to appear.
,[9] Non linear Programming, McGraw-Hill, New York, 1969. | MR | Zbl
,