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Universite de Paris-Sud,
91405 Orsay (France)

Ann. Inst. Henri Poincaré,

Vol. XXIII, n° 3, 1975,

Section A :

Physique théorique.

ABSTRACT. - We study the Schrodinger Hamiltonian H for a system
of N particles (N &#x3E; 3) in interacting via translation invariant two-body
potentials satisfying the conditions Vij E 0 } ) and cr-2ij.
for a suitable value of c. We prove that H is essentially self-adjoint on
the space ~o of ~°° functions with compact support contained in the
region where no two particles coincide. The value of c for which our proof
is valid is the optimal one c = - n(n - 4)/4 for n = 1 and n = 4 (all N)
and for N = 3, n  6, and has the correct sign in all cases. Under similar
but weaker assumptions on the potentials, we also prove that H defined
in a suitable way as a sum of quadratic forms coincides with the Friedrichs
extension of its restriction 

1. INTRODUCTION

The problem of essential self-adjointness of the Schrodinger opera-
tor H = - A + V(x) in R" is an old problem [2] [4] [9]. Until recently,
all known results assumed fairly strong local conditions on the poten-
tial V, for instance conditions of the Stummel type [9]. Recently however,

(*) Laboratoire associe au Centre National de la Recherche Scientihque.
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212 M. COMBESCURE-MOULIN AND J. GINIBRE

it was proved by Simon that if the potential V is positive, it is sufficient
to assume V E to ensure that H is essentially self-adjoint on the
space ~ of ~°° functions with compact support [12]. Actually, Simon
imposed an additional restriction on the growth of the potential at infinity,
but the latter was subsequently removed by Kato. who generalized Simon’s
result to a larger class of potentials by an entirely different method [6].

In the applications to two-particle systems, the space variable repre-
sents the relative position of the two particles, and the potential repre-
sents their interaction. In a large number of cases of physical interest,
it is necessary to consider potentials that become highly singular when
the two particles come close together, namely at the origin. In such cases,
it is a natural question to ask whether H is essentially self-adjoint on the
space

of ~°° functions with compact support contained in the complement
of the origin. This question was considered by Kalf and Walter [3], by
Schmincke [11] ] and subsequently by Simon [13] and Robinson [8] who
proved that this is indeed the case if VeL~(~"B{0}) and if in addi-
tion V satisfies the condition

where r = I x and c = - n(n - 4)/4.
The extension of this result to N-particle systems interacting via trans-

lation invariant two-body potentials was considered by Robinson et al. [1 ].
In this case, the space variable x = (x 1 , ..., represents the set of positions
of the N particles, the relevant Hilbert space is = and the
Hamiltonian is defined formally as H = Ho + V, where

and

Here ~~ is the Laplacian with respect to the position of particle i, and Vij
is a two-body potential that is translation invariant, i. e. that depends
only on xt - x~ . We have assumed for simplicity that all particles have
the same mass m = 1. For N = 2 and after d.iscarding the center of mass
variable, one recovers - A + V where the space variable is the relative

position x1 2014 x2 of the two particles. -

It was then conjectured by Robinson et al. that this H is essentially
self-adjoint on the space

Annales de l’Institut Henri Poincaré - Section A



213ESSENTIAL SELF-ADJOINTNESS OF MANY PARTICLE SCHRODINGER HAMILTONIANS

functions with compact support contained in the complement of
the closed set S where two particles coincide:

provided each Vij satisfies the same conditions as in the two-body case,
namely Vij E 0 }) and cr-2ij where rij = I and

c= -n(n-4)/4.
The main purpose of this paper is to try and prove this conjecture.

Actually, we prove only a weaker result, in the sense that we do not obtain
the correct value of c for all n and N, but only for n = 1 and n = 4 (all N)
and for N = 3, n _ 6. For the other values of n and N, the value of c we
obtain has nevertheless the correct sign. See theorem 3.1 1 for a precise
statement. The previous result of Simon and Robinson covers the case
N = 2 (all n) and comes out as a special case of our result.

In the two-body case, it is known that H remains semi-bounded down
to c = - (n - 2)2/4 and one may wonder whether some property weaker
than essential self-adjointness remains valid in the interval

This is connected with another question raised by Robinson, namely
whether H defined in a suitable way as a sum of quadratic forms coin-
cides with the Friedrichs extension of its restriction to ~o . The relevant
assumptions on V, and more generally on Vij in the N particle case, are
then that Vij~L1loc(RnB{ 0 } ) and that cr-2ij with c = - (n - 2)2/4.
Note that replaces since we now deal with quadratic forms instead
of operators. The expected result is not simple to state, because the defi-
nition of H as a sum of quadratic forms requires some care. See section 4
for details. Once this is done, the expected result is that the quadratic
form associated with H is positive and coincides with the closure of its
restriction to ~o as a quadratic form, under the conditions on the poten-
tials stated above. If in addition 0 ~ ), this means that H
coincides with the Friedrichs extension of the operator Ho + V defined
with domain P)o.
A by-product of our investigation is to prove this second conjecture

in a slightly weaker form, in the sense that we obtain the correct value of c
only for n  2 (all N) and for N = 2 (all n). For n &#x3E;- 3 and N &#x3E; 3, we
obtain only c = - (n - 2)~/2N. See theorem 4 .1 for a precise statement.
A weaker result in the same direction is proved by Robinson et al. [1 ],
where is replaced by and c by zero.
The method of proof of our results is an extension of that of Kato, in

a slightly modified version inspired by the work of Simon. The main new
information consists of inequalities and estimates for suitably chosen N
particle trial functions.
The paper is organized as follows. In section 2, we introduce the N-particle
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214 M. COMBESCURE-MOULIN AND J. GINIBRE

functions mentioned above and derive the relevant inequalities and esti-
mates. We then prove the results on essential self-adjointness in section 3
and the results on quadratic forms in section 4. Section 5 contains some
additional remarks.

2. ESTIMATES FOR N-PARTICLE FUNCTIONS

From now on, we consider systems of N particles in the center of mass
frame. In particular, the space variable ranges over and the Hil-
bert space is :Yt = We keep the same notations Ho, S and @o
for the objects associated with this reduced problem, namely

Let xij = x; - x f and rij == ) I and define r by:

We consider the following class of N-particle functions:

where:

with a and f3 arbitrary real numbers.
The first purpose of this section is to derive some inequalities on the

function These inequalities will be stated in proposition 2.1. In all
this section, such expressions as Hot/1 represent the action on 03C8 of the
ordinary differential operator associated with Ho in the ordinary sense.
The function thereby obtained is well defined in the complement of S,
since t/1 is in this region. It is not claimed that Hot/1 makes sense as the
image of a vector in 3f under an operator in Jf.
We need some preliminary definitions and estimates. We define

Let now a denote an arbitrary subset of 3 particles (in the case N &#x3E;_ 3).

Annales de l’lnstitut Henri Poincaré - Section A



215ESSENTIAL SELF-ADJOINTNESS OF MANY PARTICLE SCHRODINGER HAMILTONIANS

We define

where the last two sums run over all 3-particle subsets of ( 1, ..., N).
U~ and W~ are 3-body potentials, and U and W are the corresponding

potential energies of the N-particle system. We need the following esti-
mates.

LEMMA 2 . 1.

(1) Let N = 3. Then

where A is the area of the triangle with vertices x;. In particular U --_ 0
if n = 1.

(2) Let N = 3. Then

(3) Let N &#x3E; 3. Then

Proof’
( I) Let a~ be the angles of the triangle with vertices x~ and A its area.

Let (i, j, k) be an arbitrary permutation of ( 1, 2, 3).
Then

(2) The first inequality follows from ( 1 ) and the third from the ine-
quality a-1 + b- I + c- i &#x3E;_ 9(a + b + (’)-1 t valid for any strictly posi-

Vol. XXIII, n° 3 - 1975.



216 M. COMBESCURE-MOULIN AND J. GINIBRE

tive a, b, c. We now consider the second inequality. With the same nota-
tions as in the proof of (1), we obtain :

Therefore

where

It remains to be shown that F &#x3E; 0 for all rij compatible with the triangle
inequality. This is done easily by noticing that for fixed r ~ and (rfk + r~ ),
F is a linear function of the variable (r k - and is positive at the two
ends of the range of this variable. We omit the details.

(3) is an immediate consequence of (2) and the definitions. This completes
the proof of lemma 2 . I .
We can now derive the relevant estimates for Hol/1.

PROPOSITION 2. I. - Let 1/1 be defined by (2.5) and (2.6).
(I) Let f3 = 0, N &#x3E; 2 and n = 1 and let (N - 1)(Na + I) ~ 1. Then:

(2) Let f3 = 0, N &#x3E; 2 and n &#x3E;_ 2 and let (N - 1 )(Na + n) &#x3E;- 1. Then:

Proof. - An elementary computation using the identities

and

Annales de l’Institut Henri Poincaré - Section A



217ESSENTIAL SELF-ADJOINTNESS OF MANY PARTICLE SCHRÖDINGER HAMILTONIANS

yields:

Proposition 2. 1 then follows immediately from lemma 2 .1. Indeed ( 1 )
follows from the fact that U - 0 for n = 1, (2) from the last two ine-
qualities in (2.15), and (3) from the second inequality in (2.14). This com-
pletes the proof.

It follows in particular from proposition 2.1 that for N = 3:

in the region defined by

and

The second condition holds in a region limited by an hyperbola with
center at a = P = - (n - 1 )/2 and asymptotes of slopes 3 ± ~ inde-
pendent of n.
The second purpose of the present section is to derive another set of

estimates for the class of functions ~ defined by (2.5) and (2.6). We define
a function of a positive real variable t by

Let y be an arbitrary real number. We now look for conditions under
which the function

considered as a vector in ~, satisfies the following condition :

(C) is bounded uniformly in E near E = 0.

PROPOSITION 2.2. - Let 03C8 and 03C6~ be defined by (2.5, 6) and (2.23)
(1) Let N = 3, y = 2. Then condition (C) holds if and only if

and (a, ~3) ~ (2 - n/2, 4 - n/2).
(At the last point, we have only ~ 03C6~ II rr C I log E [ ).

Vol. XXIII, n° 3 - 1975.
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(2) Let N &#x3E; 3,~ = 0 and n + x(N - 1) &#x3E; 0. Then condition (C) holds
if and only if

and (a, y) =1= ( - n/(N + 1 ), n(N - 1 )/2(N + 1)).
(At the last point we have only I C Log 8 [ ).

Proof.
(1) We consider .

If 2p  4a + n, the integral over x3 is bounded uniformly in and the
conclusion follows iff 2a + n - 4 &#x3E; 0.
If 2fl &#x3E; 4a + n, the integral over x3 satisfies the estimate

by homogeneity. The conclusion follows iff

If2p = 4a + n, the integral over x3 behaves as C Log r12 and the conclu-
sion follows iff 2a + n - 4 &#x3E; 0. Part (1) of proposition 2 . 2 is obtained

by collecting these various results.

(2) The case N = 3 is trivial and we assume N &#x3E; 4.
The proof is elementary but tedious and will only be sketched briefly.

With the origin taken at the point - x + x~) and a suitable normaliza-
tion of the volume element in 1), we get

where

By power counting, we expect G to be bounded uniformly in r12 if

n + (N + 1 )a &#x3E; 0 and to diverge as the (n + (N + l)x)(N 2014 2)-th power
of r12 when r12 tends to zero in the opposite case. This suggests the conver-
gence conditions (2.26) in the first case and (2.27) in the second case.
Replacing rij by r for all (i, j) # ( 1, 2) when a  0, we see immediately
that these two conditions are necessary. The only non trivial point is
their sufficiency in the range n + a(N - 1) &#x3E; 0.

Annales de l’Institut Henri Poincaré - Section A
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Suppose first that

Using the inequalities

where ri = I and a 2 = 2/(N - 2), and applying Holder’s inequality,
we obtain the estimate

where

The integral in K factors as the (N - 2)-th power of the integral

where xo is a dummy integration variable, ro = 1 and r;o = I Xi - xo I.
This integral converges uniformly in r 12 near zero under the asump-
tion (2 . 31 ). It remains to be shown that L is finite. This is done easily
by estimating the integrals over x~ (3  j  N) in decreasing order of j,
for fixed  j), by another use of Holder’s inequality. The general
form of the inequality to be used is:

which is valid for - 2n  2a(N - 1 )  - n.
The first inequality follows from Holder’s inequality and the second

from homogeneity. C is some constant independent of the r~~ .
In the present case, we use (2.36) with N replaced by (N - 2) and a

by a(N + 1 )/(N - 3), and perform the integrations over x~ for j = N, N - 1, ...

until we finally reach a value of j for which the integral over x~ converges
uniformly with respect to all x~, i  j. This may already occur for j = N
if a is sufficiently large (for instance a &#x3E; 0) and does certainly occur for

Vol. XXIII, n° 3 - 1975.
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some j  4 if a &#x3E; a 1 == - n(N - 3)/(N - 2)(N + 1 ). This proves the
finiteness of L and therefore the boundedness of G uniformly in r12. There-
fore condition (2.26) is sufficient in this case.
We next consider the case

and estimate the integral G by the same method as above. For a sufficiently
small, all the integrals over xN, ... , x3 have a negative power counting
and we therefore obtain an estimate

for some constant C independent of r 12. This implies the sufficiency
of condition (2.27). This argument turns out to apply in the inter-
val - n/(N - 1  a  a2 = - n(2N - 3)/2N(N - 1 ). In the intermediate
interval a ~ a,, we estimate G again by integrating over xN, ..., x3
in that order, but we now apply Holder’s inequality in such a way that
no factor r12 is produced when estimating the integral over x~ for j ~ 4.
The negative power of r12 expected from power counting is then entirely
produced by the integration over x3. Again condition (2.27) is found to
be sufficient, except in the special case where equality occurs in (2.37).
In this case, we obtain only

so that strict inequality is required in (2. 27) to ensure uniform boundedness
in E. We omit the details.

This completes the proof of proposition 2.2.
In the last part of this section, we combine the estimates contained in

propositions 2. 1 and 2.2 to solve the following problem: find a real
constant c as small as possible such that there exists a 03C8 in the class defined
by (2 . 5) and (2.6) and a ~ &#x3E; 0 such that ~ satisfies the inequality

and condition (C). We consider only the special cases y = 2 and y = 1,
which will be useful in sections 3 and 4 respectively. For each choice of n
and N, we give the values of a and {3 that occur in 1/1, and the corresponding
value of c. In all cases one may take any ~, &#x3E;_ N/2.

PROPOSITION 2. 3. - Let 03C8 and 03C6~ be defined by (2 . 5 , 6) and (2 . 23).
Let y = 2. Then condition (2.38) and condition (C) hold in the following
cases :

If :

take :
If : 0

take : 0

Annales de l’Institut Henri Poincaré - Section A



221ESSENTIAL SELF-ADJOINTNESS OF MANY PARTICLE SCHRODINGER HAMILTONIANS

and

If:

Proojl
( 1 ) follows immediately from propositions 2 . I . 1 and 2 . 2 . 2.

(2) follows from propositions 2.1.2 and 2.2.2. We take {3 = 0 in this

case. Because of ( 2 .17 ), we can take where a satisfies
the conditions 2 ’
The optimal value of a is that which minimizes c under these conditions,
namely «m = - (n - 2)/N if C(m satisfies (2.39, 40), and the minimal value
of a that satisfies (2. 39, 40) if C(m does not. Now «m &#x3E; 2 - n/2 if and only
if (N - 2)(n - 4) &#x3E; 4, while the condition (2.39) coincides with (2.40)
for N = 2 and is never relevant for N &#x3E; 3. The result follows immediately,
except for N = 3, n = 8 where we hit the exceptional point in proposi-
tion 2.2.2 where a logarithmic divergence occurs. This case however is
covered by (3) below.

(3) follows from propositions 2.1.3 and 2.2.1. Indeed we may
take c = (x((X + n - 2) and choose any (a, {3) such that:

and

This allows a = 2 - n/2 for n  6. For n = 6, the only point with
a = 2 - n/2 = - 1 has also f3 = 1 and is therefore the exceptional point
in proposition 2.2. I with a logarithmic divergence. We keep away from
it by taking a &#x3E; - 1. For n &#x3E; 6, we obtain from (2.41, 42) a value of c
that is slightly better (i. e. smaller) than the value - (n - 2)2/6 obtained
in (2), but is nevertheless different from the expected val ue - n(n - 4)/4.
This is a negligible improvement and we do not write down the precise
value of c.

This completes the proof of proposition 2.3.
We finally consider the case y = 1.

PROPOSITION 2.4. - Let t/1 and be defined by (2.5, 6) and (2.23).
Let y = 1. Then condition (2.38) and condition (C) hold in the following
cases:

The optimal val ues are a = 1/2, c = - 1/4.

Vol. XXIII, n° 3 - 1975.
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The optimal values are a = - (n - and c = - (n - 2~/2N.

- The proof is similar to that of proposition 2.3 and will be
omitted.

- 

3. ESSENTIAL SELF ADJOINTNESS

We now state and prove our main result. We consider again a system
of N particles (N &#x3E; 2) with Hamiltonian H = Ho + V with Ho and V
defined by (2 .1 ) and ( 1. 2). We define S and by (2 . 2) and (2 . 3).

THEOREM 3.1: - H is essentially self adjoint on ~o provided each Vij
satisfies the following conditions :

where c takes the values given in proposition 2.3, namely

for

for

for J

Proof: The proof is very similar to those in [6] and [13]. Let the poten-
tials Vij satisfy (3 .1 ) and (3 . 2) where the constant c is left unspecified for
the moment. The operator H is defined on ~o and maps ~o into By
duality, the adjoint operator ft maps into ~ó, the space of distribu-
tions in Q = (~n~N -1 R can be described as follows. Any p e ~f belongs
to and therefore to !Øó. Hocp is defined by applying to it
the differential operator of Ho in the sense of distributions. Since
V E Vrp E and therefore V l{J E ~o - One then takes

The Hilbert space adjoint H* of H is the restriction of H to the subspace
of those ~p E ye such that E ye.

In order to prove that H is essentially self adjoint on suffices
to prove that for some ~, &#x3E;_ 0, ()" + H) is injective from ye into ~o ~ namely
that 03C6 E ye and (À + = 0 imply 03C6 = 0.

Annales dl- l’lnstitut Henri Poincaré - Section A
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Let therefore 03C6 E Yf and (03BB + = 0 for some 03BB &#x3E; 2014 + 1. We want
to show that 03C6 = 0. Now H003C6 = - (À + E It then follows
from a lemma of Kato ([6], lemma A, page 138) that

and therefore, since V &#x3E; cVo (where Vo is defined by (2.7)),

in the sense of distributions, i. e. weakly on ~o .
Let us now introduce an auxiliary function fof a real positive variable t

such that :

j’(t) increases monotonically from 0 to 1 in the interval [1, 2].
For E &#x3E; 0, we define a function ie by fE(t) and a function FE by

where r is defined by (2 . 4). Clearly We shall also denote by F£
the operator of multiplication by this function in 2)ó.
We now assume the existence of a function ~ with the following pro-

perties
(A I) yl E 
(A2) ~ is strictly positive almost everywhere
(A3) (Ho + cVo + ~,)~ &#x3E; ~ in the ordinary sense in Q.
(A4) and [Ho, tends to zero weakly in jf when e tends to zero.

([Ho, is defined in the ordinary sense and lies in 2)0).
The existence of such will be established below. Assuming this

for the moment, we proceed with the proof of the theorem. Because of (A 1),
~o and because of (A2), &#x3E; 0. We then obtain from (3 . 4) :

and therefore

From (3. 7) and (A3) it follows that:

Let now ~ ~ 0. The first term in the L. H. S. of (3. 8) tends to  
while the second tends to zero by (A4). Therefore  ~p ~ ~  0, and
therefore p = 0 because of (A2).

Vol. XXIII, n° 3 - 1975.
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We complete the proof of theorem 3.1 1 by establishing the existence
of 03C8 satisfying (A1)-(A4). We take 03C8 in the form defined by (2 . 5, 6). (A 1)
and (A2) are then satisfied. (A3) and (A4) with À = 1 + N/2 and the values
of c given in theorem 3.1 1 follow immediately from proposition 2.3 and
lemma 3.1 below. The condition ~ E ~f is easily seen to hold for the choices
of a and {3 described in proposition 2.3.

LEMMA 3 .1. - Let 03C8 and qJt be defined by (2.5, 6) and (2.23) with
y = 2 and let satisfy condition (C). Then [Ho, tends to zero weakly
in Jf when 8 tends to zero.

Proof. - We compute

Now :

and

Here and below, we neglect the contribution of the last factor in (3.5)
which is harmless for any a and /3. From (3 .10, 11 ) we obtain:

and

where we have used the inequality

which follows from the fact that the L. H. S. has support in the region
E   28 ~ 

From the definition of fE it follows that the support of [Ho, shrinks

to zero when 8 tends to zero. It is therefore sufficient to show that ~ [Ho, [
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225ESSENTIAL SELF-ADJOINTNESS OF MANY PARTICLE SCHRODINGER HAMILTONIANS

is bounded uniformly in ~ near zero. Now from the definitions of f~ and ge,
it follows that

for some constant B independent of e. Comparing (3.9), (3.12), (3.13),
and (3.14) yields

for some constant C independent of B.
Since I/J is symmetric with respect to the N particles, the L. H. S. of (3 .15)

is uniformly bounded in norm as 0 if ~p~ is. This completes the proof
of lemma 3.1.

4. QUADRATIC FORMS AND FRIEDRICHS EXTENSION

In this section, we shall consider possible definitions of the Hamilto-
nian through the use of quadratic forms. In the whole section, we assume
that the potentials Vij satisfy the conditions V~~ E 0 }) and
Vij ~ cr-2ij for some suitable c. We consider first the case of general values
of n and N. Possible improvements in the special case N = 3, n &#x3E;_ 3 will
be mentioned in remark 4.1 I below.
We first derive some identities and inequalities for operators defined

on ~o and the associated quadratic forms defined on ~o x ~o . Let

where the subscript i labels the particles ( 1  i  N), a takes any real
value, and

Define

where Vo is defined by (2. 7). All these operators are defined with domain ~o .
An elementary computation, almost identical with that in the proof of
proposition 2.1, yields:

Vol. XXIII, n° 3 - 1975.



226 M. COMBESCURE-MOULIN AND J. GINIBRE

The last term in (4.6) is positive by lemma 2.1.3. Let now

and c~ = in both cases. c(a) is minimum for a = am and increasing
for a &#x3E; am. Then for any cx’ &#x3E; a &#x3E; the following inequality holds
(between quadratic forms on ~o x ~o)~

In particular

All these inequalities follow from the fact that 0 for any a. The
last one for general N can also be proved directly from the special case
N = 2 as follows: let p; = - Then from (2 .1 ) :

Now for N = 2, (4 . 9) is the inequality (n-2)2/4r2ij where pij = 1 2(pi-pj)
is the relative momentum between the two particles. Substituting this
inequality into (4.10) yields (4.9) for general N.
We next define operators Di and H(a) by extending Di and Q(a) in

a natural way. We recall that there is a one-to-one correspondence between
positive self-adjoint operators and closed positive quadratic forms, such
that the domain of the closed form associated with the operator A

is ([5], chap. 6). This domain will be called the form domain of A
and will be denoted Q(A). If A and B are two positive self adjoint ope-
rators, we denote by A + q B their form sum, i. e. the unique positive self-
adjoint operator whose associated quadratic form is the sum of those

of A and B. In particular Q(A + q B) = Q(A) n Q(B) ([5], chap. 6).
We now define D~ as the closure of Di. The operator is the self-

adjoint operator associated with the In particular,
Q(D*DJ = ~(D,). We define the positive self-adjoint operator H(a) by
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In particular

We are now prepared to introduce the interaction and define the total
Hamiltonian. Let the potentials Vi i satisfy the condition

We define an operator H from Yf to 2)~ with domain

by = H003C6 + Vrp, in the sense of distributions. We also define an ope-
rator H+ from 3f to ~f as the restriction of fi to those such
that Rlp (cf. [7]).

Suppose in addition that the Vij satisfy the condition:

Define:

In particular:

One sees easily that H c H + ([7]).
Let h be the closed positive quadratic form associated with H, and let h

be the restriction of h to g) 0 x is the quadratic form defined in an
obvious way by Ho + V on ~o x ~o . The main result of this section
is the following.

THEOREM 4.1. - Let V satisfy conditions (Bl, 2) and let h and  be
defined as above. Then h is the closure of h.

Proof - We want to prove that g)o is dense in Q(H) in the sense of
the norm + ~p) where Â is some strictly positive
number. We choose Â = 1 + N/2. This property is equivalent to the fact
that cp E Q(H) and rp orthogonal to P}o in the sense of the corresponding
scalar product imply rp = 0. Now lp E Q(H) implies ~p E Q(V - cVo),
therefore V03C6 E and cp E g)(A). The condition that 03C6 E Q(H) be
orthogonal to in the previous sense then becomes

(R + = 0 (weakly on g)o) (4.14)
From (4.14) and the fact that V cp E it follows that also Horp E 
Therefore, by Kato’s lemma [6]:
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Therefore:

where we have used the inequality V - 0.
Let now 03C8 be defined by (2. 5, 6) with f3 = 0 and the same a as in condi-

tion (B2) and the definition of H(a). This ~ satisfies condition (A l, 2, 3)
stated in the proof of theorem (3 .1 ). In particular (A3) follows from pro-
position (2 .1.1, 2). Define F, by (3 . 5). Then Eg)o and (4.16) implies :

Using the definition of H(a), we obtain from (4.17) :

or:

for n ~ 2 and N ~ 3. For n = 1 or N = 2, the quantity 

should be omitted in the L. H. S. of both inequalities. In all cases:

From (4.18), property (A3) and the identity

it follows that

From w E Q(H(et)), it follows that CfJ E and therefore ~i03C6 E 
This implies

in the sense of distributions, i. e. weakly on ~o’ The proof of (4 . 20) is

analogous to that of Kato’s lemma, but simpler.
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We now complete the proof of the theorem, assuming for the moment
that ~ satisfies the condition :

and tends to zero weakly in ~f when g 1 0.

We let E tend to zero in (4.19). It follows from (A’), from (4.20) and the
fact that E ~, and from the inequality

that the second term in the L. H. S. of (4.19) tends to zero while the first
term tends to ~,! Therefore ( 0 and therefore cp = 0
because of (A2).

It remains to be shown that satisfies (A’). One sees easily that ~ E Jf,
while

where we have again neglected the contribution of the last factor in (3.5).
From (2 . 22) and (3 .14), we obtain :

(A’) follows from (4. 22) and proposition 2.4.1,2.
This completes the proof of theorem 4.1.

REMARK 4.1. - Theorem 4. I yields the strongest results when the

assumption on Vij is the weakest, i. e. when a = am, c = cm in assump-
tion (B2). In the special case N = 3, n &#x3E;- 3, the result of theorem 4. I can
be improved by using a more elaborate cv with f3 # 0. The definition of H
has to be modified suitably. The net result is to replace om = - (n - 2)2/6
by c = - (n - 1 )(n - 4 + ~/3)/6. The proof is obtained by trivial modifi-
cations of that of theorem 4.1, using proposition 2.4. 3 instead of 2.4.1, 2.
We now exhibit some consequences of theorem 4. 1, in order to clarify

its meaning. We use the following definition. Let A be a positive symmetric
operator with domain ~(A). We define the Friedrichs extension of A as
the positive self adjoint operator associated with the closure of the posi-
tive closable form !~) = ( defined on ~(A) x ~(A).

COROLLARY 4.1. - Let a &#x3E; am and c = and let H(cx), H(x) and H
be defined as above. Then

( 1 ) H(a) is the Friedrichs extension of H(;x).
(2) H(a) coincides with the form sum
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In particular for a &#x3E; rim, Q(H(o:)) = Q(H(«",)) n Q(Vo) is independent of ri
and contained in Q(Vo).

(3) Let Vij satisfy conditions (Bl, 2). Then the form sum

is independent of a’ for a’ _ ex, and therefore coincides with H.

(4) The form sum H(a) + q ( - c(a)Vo) is independent of a for  0 (n &#x3E;- 3)
or for am( = 1/2)  a  1 (n =1 ). It coincides with Ho in the range o~o~0

Proof.
( 1 ) Apply theorem 4. 1 with Vij = 2.

(2) Take Vij = and apply theorem 4. 1 once for a and once for am :
both members of (4.23) coincide with the Friedrichs extension of H(oc).

(3) By theorem 4.1, the quadratic form of the operator

is the closure of its restriction to @o x ~a, where it coincides with the

quadratic form defined by Ho + V and is therefore independent of a’.

(4) Applying (3) with V = 0 proves the first point (the first statement
is empty for n = 2, since the only admissible value of a is zero in this case).
For n &#x3E;- 2, one can prove that Ho coincides with the Friedrichs extension
of its restriction to Qo . The proof is almost identical with that of theorem 4.1,
with however a = 0 and Di replaced by the operator O~ with its usual domain.
The second statement in (4) then follows from equality of the restrictions
to ~o of the quadratic forms of the operators Ho and 

REMARK 4 . 2. - For n = 1, the operator H(a) + ~ ( - = H( I )
is not Ho. It describes instead particles with point hard cores (namely
with wave functions vanishing on S).

REMARK 4. 3. - If V; &#x3E; 0 and n &#x3E;- 2, it follows from corollary 4.1.3, 4

that H coincides with the form sum Ho +~V.
We have seen in theorem 4. that H can be defined by extension of the

quadratic form h with domain fØo. We shall now see that under similar

assumptions, H can also be obtained as a suitable restriction of H.

THEOREM 4 . 2. - Let Vij satisfy conditions (BI) and (B2) where now
ex &#x3E; am, c &#x3E; and let H’ be the restriction of H+ to the domain

Then H’ = H (In particular H’ is self adjoint).

- We already know that Q(H) c Q(Vo) because of corollary 4 .1. 2
and the definition (4.13) of H. Therefore H c H’. Let now 0’ E ~(H’) and
À = 1 + N/2. Since H is positive self adjoint, there exists 0 E ~(H) such
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that (x+H~==(2+H)6. Therefore where ~=~-66~(H~
since both H and H’ are restrictions of H. Since lp E V lp E 
From Kato’s lemma [6] and assumption (B2), we obtain as in the proof
of theorem 4.1 I

We introduce the same 1/1 and FE as in the proof of theorem 4.1 and deduce
from (4 . 25) that

From this it follows as in the proof of theorem 3.1 1 that

From (4.27) and (3.15), we obtain

where C is some constant independent of E. The last factor in (4.29) tends
to zero with E because w E Q(Vo) while the first factor is bounded uniformly
in E because of proposition 2.4. We then let E tend to zero in (4.27) and

~ ! )  0 and therefore rp = 0. Therefore H’ c H. This
completes the proof. ’
A stronger result in the same direction as theorem 4.2 can be obtained

if in (B2) one takes for c the values given in theorem 3.1. The corresponding
result is the analogue in the present situation of the main theorem in [7].

THEOREM 4. 3. - Let Vij satisfy conditions (B 1) and (B2) where now c
takes the values given in theorem 3 .1. Then H = H + (in particular H +
is self adjoint).

Proof: The beginning of the proof is identical with that of theorem 4. 2
with H+ replacing H’. One is led to show that if 03C6 ~ H and 03C6 satisfies (4. 25),
then ~p = 0. The end of the proof is the same as that of theorem 3.1. Notice
however that in order to obtain the values of c given in theorem 3 .1 for N = 3,
one needs to use both in t/1 and in the definition of H the improved form
of H the improved form of w given by (2 . 6) with ~3 ~ 0 (Cf. Remark 4 .1 ).

So far, we have assumed that 0 ~ ). In this case, there
is no minimal operator in Yf with natural domain associated with Ho + V.
Instead we have defined H as a sum of quadratic forms, so that H is self-
adjoint by construction. All previous results of this section are of the
nature of identifying this H with other possible candidates.
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We now come back to the special case where V; e 0 } ). Then
there is an operator H = Ho + V with domain ~o and it is a natural

problem to look for self-adjoint extensions of this operator. In the remain-
ing part of this section, we shall obtain some results concerning the
uniqueness of self-adjoint extensions of H under suitable restrictions.
The strongest result in this direction has already been derived in section 3,
where we have proved that H is essentially self adjoint on ~o under suitable
assumptions on V.
We first state a simple consequence of theorem 4 . (cf. [7]).

COROLLARY 4 . 2. - Let Vij E { 0 } ) and for all (i, j).
Let H = Ho + V with domain ~o . Then H has only one self-adjoint
extension with domain contained in Q(H). (Equivalently: then H is the
Friedrichs extension of H).
The equivalence of the two statements in corollary 4.2 is a well known

property of the Friedrichs extension.
With the same assumptions on V, one can prove the following result,

which bears the same relation to theorem 4. 2 as does theorem 3 . 1 to theo-
rem 4 . 3..

THEOREM 4.4. - Let Vij E 0 } ) and cmr-2ij for all (i, j).
Let H = Ho + V with domain ~o’ Then H has at most one self-adjoint
extension with domain contained in Q(Vo).

Proof: Let H 1 and H2 be self-adjoint extensions of ~I with domains
contained in Q(Vo). It is sufficient to show that this implies H2 = Hi.
Let D2 E ~(H2) and let h &#x3E; 0 be sufficiently large. Then, since H I is self

adjoint, there exists 0i~~(Hi) such that (~+!+Hi)ei=(A+f+H2)02’
Therefore (À + i + = 0 where cp = 9i - 82 E Q(Vo) and R is the opera-
tor from Jf to ~o. dual of H (cf. the proof of theorem 3.1). From this,
one deduces that cp = 0 by the same argument as in the proof of theorem 4 . 2.
Therefore H2 c Hi, therefore H2 = Hi I since both are self adjoint. This
completes the proof.

If a &#x3E; am, it follows from corollary 4.1.2 and the definition (4.13) of H
that Q(H) c Q(Vo). Therefore H is a positive self-adjoint extension of H.
This allows one to recover corollary 4. 2 from theorem 4.4 in the restricted
case a &#x3E; am without using theorem 4.1, provided one uses (4.11, 12)
with a to define H(am) and then (4.23) and (4.13) to define H(a) and H.
The statement in corollary 4.2 with a = am, however, cannot be deduced
from theorem 4.4.

A result similar to theorem 4.4 and corollary 4.2 but restricted to the
two-body case, has been obtained by Kalf (See theorem (3) in [14] and
the references contained in that paper).
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5. CONCLUDING REMARKS

The results obtained in sections 3 and 4 are optimal as regards the
behaviour of the potentials near the origin if the latter is governed by a
power law r-Jl with  ~ 2. For  = 2 however, the result depends on the
value of the coupling constant c, and the values obtained for c in theo-
rems 3 .1 and 4.1 are not expected to be optimal. On the basis of the results
for the two-body case, one expects c = - n(n - 4)/4 for theorem 3.1 1
and c = - (n - 2)2/4 for theorem 4.1, for all N. It is clear from the method
of proof that such an improvement depends on the construction of a trial
function 03C8 that correctly reproduces the behaviour of the ground state
of H in the neighbourhood of the set S where two or more particles come
close together. The trial function used in this paper is sufficiently accurate
when no more than two particles come close together, but not other-
wise. Possible improvements would consist in introducing k-body terms
in (J) (2  k  N). This introduces many-body potentials in the expression
of These potentials become more and more difficult to estimate
when N increases and there is little hope to reach the expected values of c
for arbitrary n and N by this method.
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