Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials
Annales de l'I.H.P. Physique théorique, Volume 23 (1975) no. 3, p. 211-234
@article{AIHPA_1975__23_3_211_0,
     author = {Combescure, Monique and Ginibre, Jean},
     title = {Essential self-adjointness of many particle Schr\"odinger hamiltonians with singular two-body potentials},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {23},
     number = {3},
     year = {1975},
     pages = {211-234},
     zbl = {0343.47007},
     mrnumber = {389063},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1975__23_3_211_0}
}
Combescure-Moulin, M.; Ginibre, J. Essential self-adjointness of many particle Schrödinger hamiltonians with singular two-body potentials. Annales de l'I.H.P. Physique théorique, Volume 23 (1975) no. 3, pp. 211-234. http://www.numdam.org/item/AIHPA_1975__23_3_211_0/

[1] P. Ferrero, O. De Pazzis, D.W. Robinson, Scattering theory with singular potentials, II the N-body problem and hard cores, Ann. I. H. P., t. 21, 1974, p. 217-231. | Numdam | MR 377305

[2] T. Ikebe, T. Kato, Uniqueness of self-adjoint extensions of singular elliptic differential operators, Arch. Rat. Mech. Anal., t. 9, 1962, p. 77-92. | MR 142894 | Zbl 0103.31801

[3] H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C∞(R \ {0} )J. Funct. Anal., t. 10, 1972, p. 114-130. | MR 350183 | Zbl 0229.35041

[4] T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc., t. 70, 1951, p. 195-211. | MR 41010 | Zbl 0044.42701

[5] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966. | Zbl 0148.12601

[6] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., t. 13, 1972, p. 135-148. | MR 333833 | Zbl 0246.35025

[7] T. Kato, A second look at the essential self-adjointness of the Schrödinger operators, in: Physical reality and mathematical description, C. P. Enz, J. Mehra, eds., D. Reidel, Dordrecht, 1974. | MR 477431 | Zbl 0328.47023

[8] D.W. Robinson, Scattering theory with singular potentials, I The two-body problem, Ann. I. H. P., t. 21, 1974, p. 185-215. | Numdam | MR 377304

[9] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971. | MR 447834 | Zbl 0225.35001

[10] M. Schechter, Hamiltonians for singular potentials, Indiana Univ. Math. J., t. 22, 1972, p. 483-503. | MR 305150 | Zbl 0263.47009

[11] U.W. Schmincke, Essential self-adjointness of a Schrödinger operator with strongly singular potential, Math. Z., t. 124, 1972, p. 47-50. | Zbl 0225.35037

[12] B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Ann., t. 201, 1973, p. 211-220. | MR 337215 | Zbl 0234.47027

[13] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rat. Mech. Anal., t. 52, 1973, p. 44-48. | MR 338548 | Zbl 0277.47007

[14] H. Kalf, U.W. Schmincke, J. Walter, R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Proceedings of the Symposium on Spectral Theory and Differential Equations, Springer Lecture Notes, Springer, Berlin, 1975. | MR 397192 | Zbl 0311.47021