Scattering theory with highly singular oscillating potentials
Annales de l'I.H.P. Physique théorique, Volume 24 (1976) no. 1, p. 1-16
@article{AIHPA_1976__24_1_1_0,
     author = {Baeteman, M. L. and Chadan, K.},
     title = {Scattering theory with highly singular oscillating potentials},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {24},
     number = {1},
     year = {1976},
     pages = {1-16},
     mrnumber = {400975},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1976__24_1_1_0}
}
Baeteman, M. L.; Chadan, K. Scattering theory with highly singular oscillating potentials. Annales de l'I.H.P. Physique théorique, Volume 24 (1976) no. 1, pp. 1-16. http://www.numdam.org/item/AIHPA_1976__24_1_1_0/

[1] D.B. Pearson, Helv. Phys. Acta, t. 47, 1974, p. 249. | MR 420033

[2] D.B. Pearson, Commun. math. Phys., t. 40, 1975, p. 125. This paper contains a complete list of references to earler work. | MR 363285

[3] R.G. Newton, Scattering theory of waves and particles, New York, McGraw-Hill, 1966, chap. 12. | MR 221823

[4] V. De Alfaro and T. Regge, Potential Scattering, Amsterdam, North-Holland, 1965, chap. 3-5. Notice the difference of notations (k → - k) with us. | MR 191316 | Zbl 0141.23202

[5] V.B. Matveev, English translation. Theoreticheskaya i Matematicheskaya Fizika, t. 15, 1974, p. 574. | Zbl 0278.47004

[6] M.M. Skriganov, Tr. MIAN im V. A. Steklova, t. 125, 1973, p. 187. | MR 344705 | Zbl 0289.35065

[7] W.O. Amrein and V. Georgescu, Helv. Phys. Acta, t. 47, 1974, p. 517. Theorem 2, remark at the end of the main text, theorem 5 in the Appendix, and the remark after this theorem. | MR 366278

[8] V. Bargmann, Rev. Mod. Phys., t. 21, 1949, p. 488 ; H.E. Moses and S.F. Tuan, Nuovo Cimento, t. 13, 1959, p. 197. | Zbl 0035.42604

[9] Ref. [3], chap. 20, and references cited therein.

[10] Ref. [4], chap. 12.

[11] N. Levinson, Phys. Rev., t. 89, 1953, p. 755. | Zbl 0050.22704

[12] Ref. [10], formulæ (12.33) and (12.34).

[13] Ref. [10], formula (12.32).